The phenylalanine residues 300 and 309 in the enzyme tyrosine hydroxylase are known to aid in the positioning and binding of tetrahydrobiopterin (BH4) to the enzyme active site. The residues phenylalanine 254 and tyrosine 325 similarly aid in binding BH4 in phenylalanine hydroxylase. BH4 is a cofactor necessary for enzyme function, and mutations in these residues have been shown to cause a decrease in enzyme function. We examine the pairwise interactions between each aromatic residue and BH4 using second-order Moller Plesset theory and density functional theory to determine the amount of binding due to these aromatic residues. Further, we perform in silico point mutations of these residues to determine if several likely mutations can cause a decrease in protein function. Our results show that dispersion dominates these interactions, and electrostatics alone is not enough to bind the BH4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp072518w | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States.
Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation.
View Article and Find Full Text PDFBiophys J
January 2025
Michael Sars Centre, University of Bergen, Norway. Electronic address:
Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Int J Biol Macromol
January 2025
Research Institute of Wood Industry of Chinese Academy of Forestry, 100091, Beijing, PR China. Electronic address:
Agarwood essential oil is prized for its elegant aroma and pharmacological properties; however, the traditional hydrodistillation method suffers from inefficiencies, constraining the industrial potential of agarwood. We proposed an ultrasonic-assisted laccase synergistic pretreatment technique that enhanced extraction throughput by 70.90 % compared to the traditional method by facilitating pore formation in agarwood and expediting the release of essential oil.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada. Electronic address:
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!