A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coordinated network functioning in the spinal cord: an evolutionary perspective. | LitMetric

Coordinated network functioning in the spinal cord: an evolutionary perspective.

J Physiol Paris

Université Bordeaux 2, CNRS Zone Nord, Bat 2, 2e étage, 146, rue Léo Saigant, 33076 Bordeaux Cedex, France.

Published: January 2008

The successful achievement of harmonious locomotor movement results from the integrated operation of all body segments. Here, we will review current knowledge on the functional organization of spinal networks involved in mammalian locomotion. Attention will not simply be restricted to hindlimb muscle control, but by also considering the necessarily coordinated activation of trunk and forelimb muscles, we will try to demonstrate that while there has been a progressive increase in locomotor system complexity during evolution, many basic organizational features have been preserved across the spectrum from lower vertebrates through to humans. Concerning the organization of axial neuronal networks that control trunk muscles, it has been found across the vertebrate range that during locomotor movement a motor wave travels longitudinally in the spinal cord via the coupling of rhythmic segmental networks. For hindlimb activation it has been found in all species studied that the rostral lumbar segments contain the key elements for pattern generation. We also showed that rhythmic arm movements are under the control of cervical forelimb generators in quadrupeds as well as in human. Finally, it is highlighted that the coordination of quadrupedal movements during locomotion derives principally from an asymmetrical coordinating influence occurring in the caudo-rostral direction from the lumbar hindlimb networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphysparis.2007.05.003DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
locomotor movement
8
coordinated network
4
network functioning
4
functioning spinal
4
cord evolutionary
4
evolutionary perspective
4
perspective successful
4
successful achievement
4
achievement harmonious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!