A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

1,25-dihydroxyvitamin D3 increases the transplantation success of human muscle precursor cells in SCID mice. | LitMetric

Human muscle precursor cell (hMPC) transplantation is a potential therapy for severe muscle trauma or myopathies. Some previous studies demonstrated that 1,25-dihydroxyvitamin-D3 (1,25-D3) acted directly on myoblasts, regulating their proliferation and fusion. 1,25-D3 is also involved in apoptosis modulation of other cell types and may thus contribute to protect the transplanted hMPCs. We have therefore investigated whether 1,25-D3 could improve the hMPC graft success. The 1,25-D3 effects on hMPC proliferation, fusion, and survival were initially monitored in vitro. hMPCs were also grafted in the tibialis anterior of SCID mice treated or not with 1,25-D3 to determine its in vivo effect. Graft success, proliferation, and viability of transplanted hMPCs were evaluated. 1,25-D3 enhanced proliferation and fusion of hMPCs in vitro and in vivo. However, 1,25-D3 did not protect hMPCs from various proapoptotic factors (in vitro) or during the early posttransplantation period. 1,25-D3 enhanced hMPC graft success because the number of muscle fibers expressing human dystrophin was significantly increased in the TA sections of 1,25-D3-treated mice (166.75 +/- 20.64) compared to the control mice (97.5 +/- 16.58). This result could be partly attributed to the improvement of the proliferation and differentiation of hMPCs in the presence of 1,25-D3. Thus, 1,25-D3 administration could improve the clinical potential of hMPC transplantation currently developed for muscle trauma or myopathies.

Download full-text PDF

Source
http://dx.doi.org/10.3727/000000007783464876DOI Listing

Publication Analysis

Top Keywords

proliferation fusion
12
graft success
12
125-d3
10
human muscle
8
muscle precursor
8
scid mice
8
hmpc transplantation
8
muscle trauma
8
trauma myopathies
8
transplanted hmpcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!