Reasonable structure, adaptive patterns and effective regulation of society, economy and environment subsystems should be taken into account in order to obtain harmonious development of urban eco-industrial system. We simulated and evaluated a redesigned eco-industrial system in Changchun Economic and Technological Development Zone (CCETDZ) in the present work using system dynamics and grey cluster methods. Four typical development strategies were simulated during 2005-2020 via standard system dynamic models. Furthermore, analytic hierarchy process and grey cluster allowed for the eco-industrial system evaluation and scenarios optimizing. Our dynamic simulation and statistical analysis revealed that: (1) CCETDZ would have different development scenarios under different strategies. The total population in scenario 2 grew most rapidly and reached 3.28 x 10(5) in 2020, exceeding its long-term planning expected population. And the GDP differences among these four scenarios would amount to 6.41 x 10(10) RMB. On the other hand, environmental pollution would become serious along with economy increasing. As a restriction factor, positive or negative increment of water resource will occur according to the selected strategy. (2) The fourth strategy would have the best efficiency, which means that the most efficiently development of CCETDZ required to take science, technology, environment progress and economy increase into account at the same time. (3) Positive environment protection measures, such as cleaner production, green manufacture, production life cycle management and environment friendly industries, should be attached great importance the same as economy development during 2005-2020 in CCETDZ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-007-9840-x | DOI Listing |
Food Chem
December 2024
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
Long-term storage of Liupao tea is conducive to improving its flavour and commercial value. Although bacterial communities influence Liupao tea flavour, their impact during storage remains unclear. The aroma compounds and bacterial communities were determined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Illumina Nova6000 analysis.
View Article and Find Full Text PDFWaste Manag Res
December 2024
Department of Environmental Engineering and Management, University of Dodoma, Dodoma, Tanzania.
This article aims to undertake a mini-review of the current state of electronic waste (e-waste) challenges on the African continent through a systematic analysis of existing national policies and legal frameworks, inventorying established management practices, and identification of innovative technological solutions. A literature review was conducted synthesizing evidence from over 80 peer-reviewed publications between 2010 and 2022. Content analysis of e-waste laws from 20 African countries supplemented the review of documented collection, recycling and export-related activities across the region alongside associated obstacles.
View Article and Find Full Text PDFJ Environ Manage
November 2024
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes.
View Article and Find Full Text PDFLangmuir
September 2024
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
Trends Biotechnol
December 2024
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!