Medullary cystic kidney disease (MCKD) belongs with nephronophthisis (NPH) to the NPH-MCKD complex, a group of inherited tubulointerstitial nephritis which share some morphological and clinical features. Juvenile NPH, the most frequent variant of the complex, is a recessive disease with onset in childhood leading to end stage renal disease (ESRD) within the 2nd decade of life. The most frequent extrarenal involvement is tapeto-retinal degeneration. MCKD is a less frequent disease with dominant inheritance; it is recognized later in life, leading to ESRD at the age of 50 years, and may be associated with hyperuricemia and gout. In an early phase, both NPH and MCKD are pauci-symptomatic, major signs being confined to polyuria. Later in the course, clinical findings are related to the progressive renal insufficiency, such as anemia, uremic symptoms and, in NPH, growth retardation. On renal ultrasound, the kidneys present an increased medullary echogenicity with diminished cortico-medullary differentiation. Renal cysts may be present, usually at corticomedullary boundary. Due to the clinico-pathological identity, the two diseases were considered to be a single disorder, and the compromise appellation of NPH-MCKD complex was suggested. This unifying conception was subsequently refuted following the identification of MCKD dominant families. The recent advances of the molecular genetics changed the traditional classification of NPH-MCKD complex. The majority of cases of juvenile NPH are due to deletion of the NPHP1 gene on chromosome 2q13. Genes for infantile and adolescent NPH have been localized to chromosome 9q22-q31 and 3q22, respectively. A new locus, NPHP4, has been recently mapped on chromosome 1p36. Two genes predisposing to dominant MCKD, MCKD1 and MCKD2, have been localized to chromosome 1q21 and to chromosome 16p12. Moreover, a gene for familial juvenile hyperuricemic nephropathy (FJHN), a phenotype very similar to MCKD, was mapped to 16p12 in a region overlapping with the MCKD2 locus. The proof of the allelism between MCKD2 and FJHN has been recently provided by the identification of four novel uromodulin (UMOD) gene mutations, segregating with the disease phenotype in three families with FJHN and one with family with MCKD2. These data provide the first direct evidence that MCKD2 and FJHN arise from mutation of the UMOD gene and are allelic disorders.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!