Inorganic porous materials are being developed for use as molecular sieves, ion exchangers, and catalysts, but most are oxides. We show that various sulfide and selenide clusters, when bound to metal ions, yield gels having porous frameworks. These gels are transformed to aerogels after supercritical drying with carbon dioxide. The aerogels have high internal surface area (up to 327 square meters per gram) and broad pore size distribution, depending on the precursors used. The pores of these sulfide and selenide materials preferentially absorb heavy metals. These materials have narrow energy gaps (between 0.2 and 2.0 electron volts) and low densities, and they may be useful in optoelectronics, as photocatalysts, or in the removal of heavy metals from water.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1142535DOI Listing

Publication Analysis

Top Keywords

sulfide selenide
8
heavy metals
8
porous semiconducting
4
semiconducting gels
4
gels aerogels
4
aerogels chalcogenide
4
chalcogenide clusters
4
clusters inorganic
4
inorganic porous
4
porous materials
4

Similar Publications

Synthesis and Reactivity of a Bipyridyl Tantalum Complex.

Inorg Chem

January 2025

Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China.

The bipyridyl tantalum complex (2,6-PrCHO)Ta(bipy) () is synthesized by the reaction of (2,6-PrCHO)TaCl () and 2,2'-bipyridine in the presence of excess potassium graphite (KC). Complex coordinates readily with pyridine and 4-(dimethylamino)pyridine (dmap) to form Lewis base adducts (2,6-PrCHO)Ta(bipy)(L) (L = py (), dmap ()), and it exhibits rich redox reactivity toward small molecules: (a) single electron transfer (SET) occurs upon exposure of to phenyl sulfide or selenide dimer, giving the open-shell, bipy-centered radical complexes (2,6-PrCHO)Ta(bipy)(PhE) (E = S (), Se ()). (b) Regioselective C-C σ-bond formation via radical coupling is observed in the SET reaction of and aldehydes, ketones, or imines to furnish insertion products -, namely, sterically more crowded benzophenone, acetophenone, 2,6-dichlorobenzaldehyde, and benzophenone imine couple with C6 or C6' of bipy in , respectively, whereas sterically less hindered benzaldehyde, cyclohexanone, and benzylideneaniline couple with C2 or C2' of bipy, respectively.

View Article and Find Full Text PDF

In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.

View Article and Find Full Text PDF

Defect-regulated MnS@NiCoSeS structures: A novel approach to unlock energy storage potential in supercapacitors.

J Colloid Interface Sci

April 2025

Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China. Electronic address:

Transition metal sulfides (TMSs) have significant potential in energy storage applications due to their high theoretical capacity and diverse reaction mechanisms. However, performance limitations in supercapacitors arise from various intrinsic defects, including low active material utilization and poor cycling stability caused by unstable electrical conductivity. To address these issues, this paper incorporates selenium atoms into sulfides, aiming to leverage selenium's high conductivity to enhance the electroactivity of transition metal sulfides.

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

Depending on their bandgaps, mixed metal layered chalcogenides are potential candidates for thermoelectric and photovoltaic applications. Herein, we reported the exploratory synthesis of Sr-Zr-Cu- ( = S/Se) systems, resulting in the identification of two novel quaternary chalcogenides: SrZrCuS and SrZrCuSe. These isoelectronic compounds (SrZrCu) crystallized in two different structural types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!