The aim of this study was to get insight into the toxic effects of holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) which have very interesting features for treatment of liver malignancies. Acute, mid- and long-term effects were studied in healthy Wistar rats by evaluating clinical, biochemical and tissue response. Rats were divided into four treatment groups: sham, decayed neutron-irradiated Ho-PLLA-MS, non-irradiated Ho-PLLA-MS and PLLA-MS. After implantation of the microspheres into the liver of the rats, the animals were monitored (body weight, temperature and liver enzymes) for a period of 14-18 months. Some of the rats that received previously neutron-irradiated Ho-PLLA-MS were periodically scanned with magnetic resonance imaging (MRI) to see if holmium was released from the microspheres. After sacrifice, the liver tissue was histologically evaluated. Bone tissue was subjected to neutron-activation analysis in order to examine whether accumulation of released holmium in the bone had occurred. No measurable clinical and biochemical toxic effects were observed in any of the treatment groups. Furthermore, histological analyses of liver tissue samples only showed signs of a slight chronic inflammation and no significant differences in the tissue reaction between rats of the different treatment groups could be observed. The non-irradiated PLLA-MS and Ho-PLLA-MS stayed intact during the study. In contrast, 14 months after administration, the neutron-irradiated Ho-PLLA-MS was not completely spherical anymore, indicating that degradation had started. However, the holmium loading had not been released as was illustrated with MRI and affirmed by neutron-activation analysis of bone tissue. In conclusion, neutron-irradiated Ho-PLLA-MS does not provoke any toxic reaction and can be applied safely in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2007.07.012 | DOI Listing |
Biomaterials
November 2007
Department of Nuclear Medicine, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
The aim of this study was to get insight into the toxic effects of holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) which have very interesting features for treatment of liver malignancies. Acute, mid- and long-term effects were studied in healthy Wistar rats by evaluating clinical, biochemical and tissue response. Rats were divided into four treatment groups: sham, decayed neutron-irradiated Ho-PLLA-MS, non-irradiated Ho-PLLA-MS and PLLA-MS.
View Article and Find Full Text PDFBiomacromolecules
July 2006
Department of Nuclear Medicine, University Medical Center, Utrecht, The Netherlands.
The clinical application of holmium-loaded poly(L-lactic acid) (PLLA) microspheres for the radionuclide treatment of liver malignancies requires in depth understanding of the degradation characteristics of the microspheres. To this end, an in-vitro degradation study was conducted. PLLA-microspheres with and without HoAcAc loading, and before and after neutron or gamma irradiation, were incubated in a phosphate buffer at 37 degrees C for 12 months.
View Article and Find Full Text PDFInt J Pharm
March 2006
Department of Nuclear Medicine, University Medical Center, Utrecht, The Netherlands.
Radioactive holmium-166 loaded poly(L-lactic acid) microspheres are promising systems for the treatment of liver malignancies. The microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method. After preparation, the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor.
View Article and Find Full Text PDFBiomaterials
March 2005
Department of Nuclear Medicine, University Medical Centre, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Radioactive holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) are promising systems for the treatment of liver malignancies. The surface characteristics of Ho-PLLA-MS before and after both neutron and gamma irradiation were investigated in order to get insight into their suspending behaviour and to identify suitable surfactants for clinical application of these systems. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used for surface characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!