Background: A disruption of sorting nexin 3 (SNX3) on 6q21 was previously reported in a patient with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and t(6;13)(q21;q12) but no SNX3 mutations were identified in another sporadic case of MMEP, suggesting involvement of another gene. In this work, SNX3 was sequenced in three patients not previously studied for this gene. In addition, we test the hypothesis that mutations in the neighbouring gene NR2E1 may underlie MMEP and related phenotypes.
Methods: Mutation screening was performed in five patients: the t(6;13)(q21;q12) MMEP patient, three additional patients with possible MMEP or a related phenotype, and one patient with oligodactyly, ulnar aplasia, and a t(6;7)(q21;q31.2) translocation. We used sequencing to exclude SNX3 coding mutations in three patients not previously studied for this gene. To test the hypothesis that mutations in NR2E1 may contribute to MMEP or related phenotypes, we sequenced the entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions including core and proximal promoter in all five patients. Two-hundred and fifty control subjects were genotyped for any candidate mutation.
Results: We did not detect any synonymous nor nonsynonymous coding mutations of NR2E1 or SNX3. In one patient with possible MMEP, we identified a candidate regulatory mutation that has been reported previously in a patient with microcephaly but was not found in 250 control subjects examined here.
Conclusion: Our results do not support involvement of coding mutations in NR2E1 or SNX3 in MMEP or related phenotypes; however, we cannot exclude the possibility that regulatory NR2E1 or SNX3 mutations or deletions at this locus may underlie abnormal human cortical development in some patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950490 | PMC |
http://dx.doi.org/10.1186/1471-2350-8-48 | DOI Listing |
Front Genet
March 2023
Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
is a 118-bp segment that lies in a pair of novel non-coding RNA genes. It shows a dramatic accelerated change with an estimated 18 substitutions in the human lineage since the human-chimpanzee ancestor, compared with the expected 0.27 substitutions based on the slow rate of change in this region in other amniotes.
View Article and Find Full Text PDFSci Rep
July 2022
Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs.
View Article and Find Full Text PDFPsychiatry Res
November 2020
Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien County, 981, Taiwan. Electronic address:
NR2E1 is implicated in the regulation of neurogenesis and considered as a candidate gene for schizophrenia. We resequenced all the exons of NR2E1 in 547 patients with schizophrenia and 567 controls from Taiwan. We identified five common SNPs with no association with patients with schizophrenia.
View Article and Find Full Text PDFCell Chem Biol
October 2020
Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA. Electronic address:
Cancer Rep (Hoboken)
October 2019
Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
Background: The human orphan receptor TLX (NR2E1) is a key regulator of neurogenesis, adult stem cell maintenance, and tumorigenesis. However, little is known about the genetic and transcriptomic events that occur following TLX overexpression in human cell lines.
Aims: Here, we used cytogenetics and RNA sequencing to investigate the effect of TLX overexpression with an inducible vector system in the HEK 293T cell line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!