Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We sought to compare engineered cartilaginous constructs derived from different perinatal mesenchymal progenitor cell (MPC) sources. Ovine MPCs isolated from amniotic fluid (AF, n = 8), neonatal bone marrow (BM, n = 6), and preterm umbilical cord blood (CB, n = 12) were expanded and comparably seeded onto synthetic scaffolds. Constructs were maintained in chondrogenic media containing transforming growth factor-beta. After 12-15 weeks, specimens were compared with native fetal hyaline and elastic cartilage by gross inspection, histology, immunohistochemistry, and quantitative extracellular matrix (ECM) assays. MPCs from AF proliferated significantly faster ex vivo when compared to MPCs from the other sources. Chondrogenic differentiation was evident in all groups, as shown by toluidine blue staining and expression of aggrecan, cartilage proteoglycan link protein, and collagen type II. Quantitatively, all engineered specimens had significantly lower levels of glycosaminoglycans than native hyaline cartilage. Elastin levels in AF-based constructs (156.0 +/- 120.4 microg/mg) were comparable to that of native elastic cartilage (235.8 +/- 54.2 microg/mg), both of which were significantly higher than in BM- and CB-based specimens. We conclude that the ECM profile of cartilage engineered from perinatal MPCs is highly dependent on cell source. ECM peculiarities should be considered when designing the optimal cartilaginous bioprosthesis for use in perinatal surgical reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.2006.0407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!