Nitrate adsorption and reduction on Cu(100) in acidic solution.

J Am Chem Soc

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.

Published: August 2007

Nitrate adsorption and reduction on Cu(100) in acidic solution is studied by electrochemical methods, in situ electrochemical scanning tunneling microscopy (EC-STM), surface enhanced Raman spectroscopy (SERS), and density functional theory (DFT) calculations. Electrochemical results show that reduction of nitrate starts at -0.3 V vs Ag/AgCl and reaches maximum value at -0.58 V. Over the entire potential region interrogated adlayers composed of nitrate, nitrite, or other intermediates are observed by using in situ STM. From the open-circuit potential (OCP) to -0.22 V vs Ag|AgCl, the nitrate ion is dominant and forms a (2 x 2) adlattice on the Cu(100) surface while nitrate forms a dominantly c(2 x 2) structure from -0.25 to -0.36 V. The interconversion between the nitrate and nitrite adlattices is observed. DFT calculations indicate that both nitrate and nitrite are twofold coordinated to the Cu(100) surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja071330nDOI Listing

Publication Analysis

Top Keywords

nitrate nitrite
12
nitrate
8
nitrate adsorption
8
adsorption reduction
8
reduction cu100
8
cu100 acidic
8
acidic solution
8
dft calculations
8
cu100 surface
8
cu100
4

Similar Publications

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological condition resulting in decreased aerobic capacity (peak VO). The hemodynamic responses to peak exercise in MS are unknown. Further, it is unknown if the hemodynamic responses are due to disease or fitness.

View Article and Find Full Text PDF

Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review.

J Toxicol

December 2024

Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.

Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!