Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Alendronate sodium, used systemically as a bone protective agent, proved to also be effective locally in various dental bone applications. Development of alendronate-loaded microspheres with high loading efficiency for such applications would be greatly challenged by the hydrophilicity and low MW of the drug. The aim of this study was to incorporate alendronate sodium, into poly (lactide-co-glycolide) (PLGA) microspheres (MS) with high loading efficiency.
Methods: Three multiple emulsion methods: water-in-oil-in-water (W/O/W), water-in-oil-in-oil (W/O(1)/O(2)) and solid-in-oil-in-oil (S/O(1)/O(2)) were tested. In addition to entrapment efficiency, MS were characterized for surface morphology, particle size, in vitro drug release and in vitro degradation of the polymer matrix. Alendronate microspheres with maximum drug loading and good overall in vitro performance were obtained using the W/O(1)/O(2) emulsion technique.
Results: Drug release from the microspheres exhibited a triphasic release pattern over a period of 13 days, the last fast release phase being associated with more rapid degradation of the PLGA matrix.
Conclusions: Biocompatible, biodegradable PLGA microspheres incorporating alendronate sodium with high loading efficiency obtained in this study may offer promise as a delivery system for bisphosphonates in dental and probably other clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02652040701439807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!