A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultraviolet radiation (UV-C): a potential tool for the control of biofouling on marine optical instruments. | LitMetric

In an effort to develop a tool for controlling biofouling of marine optical instruments, the efficiency of ultraviolet radiation (UVR - 254 nm) in preventing biofouling was evaluated by conducting in situ experiments at different intensities (14.7, 9.6, 7.3 Wm(-2)) and exposure times (continuous, on for 30, 15, 5, 1 min h(-1)) using glass as test coupons. Although there was significant seasonal variation in environmental conditions and phytoplankton composition among each experiment, the amount of biofilm relative to the internal control demonstrated consistent trends. The efficiency of UVR in preventing biofouling increased significantly with increase in intensity and exposure time. UVR was effective even in reducing the population of microfoulers from already developed biofilms. UVR exposure for 30 min h(-1) at all intensities as well as for 5 and 15 min h(-1) at the highest intensity was found to be most effective. It was observed that UVR dose is not the sole determinant of UVR effectiveness. The reduction in transmission level of the UVR treated coupons was < 5% irrespective of exposure time except for 1 min h(-1). These results reveal that UV-C radiation can be used as a potential biofouling control tool for optical instruments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927010701275598DOI Listing

Publication Analysis

Top Keywords

min h-1
16
optical instruments
12
ultraviolet radiation
8
biofouling marine
8
marine optical
8
preventing biofouling
8
exposure time
8
uvr
7
biofouling
5
radiation uv-c
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!