We investigated the spore density, species composition, and diversity of arbuscular mycorrhizal fungi (AMF) in a cultivated land (CL), an old field (OF), and a never-cultivated field (NCF), which are located adjacently in a slope in the hot and arid ecosystem of southwest China. AMF spores in the rhizosphere soils of representative plants in the three habitats were extracted by wet-sieving and decanting. A total of 47 taxa of AMF including 31 taxa from the genus Glomus, 8 from Acaulospora, 6 from Scutellospora, 1 from Entrophospora, and 1 from Gigaspora were extracted and identified morphologically. The highest spore density occurred in NCF, slightly lower in OF and lowest in CL, and the Shannon-Wiener index of species diversity was reversed. The dominant species of AMF were different in the three habitats. OF resembled NCF more than CL in AMF spore density, species richness, and community composition, which means that AMF community in the OF has been developing from cultivated land to natural habitat. Cluster analysis based on the similarity in AMF community composition indicated that the distribution of AMF was not random over space and that AMF community composition associated with a given plant species was greatly habitat-convergence. Following the cluster analysis, we hypothesized that the effect of habitats on AMF communities were greater than that of the host preference to AMF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-007-0143-4 | DOI Listing |
Sci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Rongcheng Chudao Aquaculture Co., Ltd., Rongcheng 264312, China.
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jiyuan Forestry Bureau, Jiyuan 454650, China.
Intercropping with legume forages is recognized as an effective strategy for enhancing nitrogen levels in agroforestry, while mowing may influence nitrogen fixation capacity and yield. This study investigated the rooting, nitrogen fixation, nutritive value, and yield of alfalfa ( L.) under intercropping and varying mowing frequencies (CK, 2, and 3) from 2021 to 2023, using walnut ( L.
View Article and Find Full Text PDFMolecules
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt.
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against (minimum inhibitory concentrations [MIC] = 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!