Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-007-0588-xDOI Listing

Publication Analysis

Top Keywords

parasitic nematodes
8
expressing dsrna
8
root-knot nematode
8
transgenic plants
8
nematodes
5
mjtis11
5
host-delivered rnai
4
rnai effective
4
effective strategy
4
strategy silence
4

Similar Publications

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

infection in captive non-human primates in zoological gardens in Spain.

J Helminthol

January 2025

Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.

Currently, there is limited available information on the epidemiology of parasitic infections in captive non-human primates (NHPs) and their zoonotic potential. However, numerous cases of helminth infections in NHPs have been documented in several zoos around the world, with one of the most prevalent being those of the genus The main objective of this study is to investigate the occurrence of infection by spp. in primates from zoological gardens in Spain and to ascertain, at the species level, the specific species harbored by these hosts by using mitochondrial and ribosomal markers.

View Article and Find Full Text PDF

Parasites account for huge economic losses by infecting agriculturally important plants and animals. Furthermore, morbidity and death caused by parasites affect a large part of the world population, especially in economically weak regions. Anthelmintic drugs to tackle this challenge remain scarce and their efficiency becomes increasingly endangered by the advent of drug resistance development.

View Article and Find Full Text PDF

An Ascaris lumbricoides infection diagnosed by colonoscopy: A case report and a brief literature review.

Parasitol Int

January 2025

Department of Health Sciences, Unit of Clinical Microbiology, "Magna Græcia" University of Catanzaro "Mater Domini" Teaching Hospital, Catanzaro, Italy; Department of Health Sciences, Unit of Clinical Microbiology, "Magna Græcia" University of Catanzaro "Mater Domini" Teaching Hospital, Catanzaro, Italy. Electronic address:

Background: Ascaris lumbricoides is a nematode that parasitizes the human gastrointestinal tract, and it is the cause of the most common helminthic infections worldwide. It predominates in areas of poor sanitation. Early diagnosis of this intestinal infection is pivotal to avoid its severe and lethal complications such as gut obstruction, volvulus, and perforation.

View Article and Find Full Text PDF

Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!