During 30-months of storage at 4 degrees C, potato (Solanum tuberosum L.) tubers progressively lose the ability to produce superoxide in response to wounding, resist microbial infection, and develop a suberized wound periderm. Using differentially aged tubers, we demonstrate that Strboh A is responsible for the wound-induced oxidative burst in potato and aging attenuates its expression. In vivo superoxide production and NADPH oxidase (NOX) activity from 1-month-old tubers increased to a maximum 18-24 h after wounding and then decreased to barely detectable levels by 72 h. Wounding also induced a 68% increase in microsomal protein within 18 h. These wound-induced responses were lost over a 25- to 30-month storage period. Superoxide production and NOX activity were inhibited by diphenylene iodonium chloride, a specific inhibitor of NOX, which in turn effectively inhibited wound-healing and increased susceptibility to microbial infection and decay in 1-month-old tubers. Wound-induced superoxide production was also inhibited by EGTA-mediated destabilization of membranes. The ability to restore superoxide production to EGTA-treated tissue with Ca(+2) declined with advancing tuber age, likely a consequence of age-related changes in membrane architecture. Of the five homologues of NOX (Strboh A-D and F), wounding induced the expression of Strboh A in 6-month-old tubers but this response was absent in tubers stored for 25-30 months. Strboh A thus mediates the initial burst of superoxide in response to wounding of potato tubers; loss of its expression increases the susceptibility to microbial infection and contributes to the age-induced loss of wound-healing ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-007-0589-9 | DOI Listing |
Free Radic Biol Med
January 2025
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
Saline-alkaline stress has caused severe ecological and environmental problems. Castor bean is a potential alkali-tolerant plant, however, its reactive oxygen species (ROS) regulatory mechanisms under alkaline stress remain unclear. This study investigated the physiological, transcriptomic, and metabolomic characteristics of two varieties (ZB8, alkaline-sensitive; JX22, alkaline-resistant) under alkaline stress.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:
This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Marine Sciences, Ningbo University, Ningbo 315211, China.
In order to investigate the causes of population degradation and resource decline, this thesis investigated the ecotoxicological effects of heavy metal Cu(Ⅱ) on the embryonic development of Sepiella maindroni. Results indicate significant effects of Cu(Ⅱ) concentrations on the developmental toxicity, teratogenicity, and lethality of S. maindroni embryos.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!