An optical toolbox for total control of droplet microfluidics.

Lab Chip

LadHyX and Department of Mechanics, Ecole Polytechnique, 91128, Palaiseau cedex, France.

Published: August 2007

The use of microfluidic drops as microreactors hinges on the active control of certain fundamental operations such as droplet formation, transport, division and fusion. Recent work has demonstrated that local heating from a focused laser can apply a thermocapillary force on a liquid interface sufficient to block the advance of a droplet in a microchannel (C. N. Baroud, J.-P. Delville, F. Gallaire and R. Wunenburger, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75(4), 046302). Here, we demonstrate the generality of this optical approach by implementing the operations mentioned above, without the need for any special microfabrication or moving parts. We concentrate on the applications to droplet manipulation by implementing a wide range of building blocks, such as a droplet valve, sorter, fuser, or divider. We also show how the building blocks may be combined by implementing a valve and fuser using a single laser spot. The underlying fundamentals, namely regarding the fluid mechanical, physico-chemical and thermal aspects, will be discussed in future publications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b702472jDOI Listing

Publication Analysis

Top Keywords

building blocks
8
droplet
5
optical toolbox
4
toolbox total
4
total control
4
control droplet
4
droplet microfluidics
4
microfluidics microfluidic
4
microfluidic drops
4
drops microreactors
4

Similar Publications

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases.

Curr Med Chem

January 2025

Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.

View Article and Find Full Text PDF

Ultralight and Flexible Subnanowire Aerogels for Intrinsically Hydrophobic Thermal Insulation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.

Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!