Background: Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed.
Methods And Results: A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients.
Conclusions: The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1253/circj.71.1181 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China.
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.
View Article and Find Full Text PDFBiofabrication
January 2025
Division of Engineering, New York University Abu Dhabi, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, Abu Dhabi, 129188, UNITED ARAB EMIRATES.
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
The Affiliated Ganzhou Hospital of Nanchang University, Meiguan Avenue No. 16, Ganzhou 341000, China.
Osteoarthritis (OA) is a chronic multifactorial disease characterized by cartilage degeneration, pain, and reduced mobility. Current therapies primarily aim to relieve pain and restore function, but they often have limited effectiveness and side effects. Coixol, a bioactive compound from Coix lacryma-jobi L.
View Article and Find Full Text PDFRSC Adv
January 2025
School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
Bone defects represent a significant challenge in clinical practice, driving the need for innovative solutions that effectively support bone regeneration. Barrier membranes, due to playing a critical role in creating an environment conducive to bone regeneration by preventing the infiltration of non-osteogenic tissues, are widely applied to bone repair. However, inadequate spatial stability and osteogenesis-promoting ability often limit current barrier membranes.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey.
There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!