WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(-) permeability.

FEBS Lett

Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA.

Published: August 2007

Mutations in WNK4 have been linked to hypertension in PHAII. Paracellular ion transport has been reported to be involved in this disease process; however, the specific molecular target has not been identified. In this study, we found that TJ protein claudin-7 and WNK4 were partially co-localized in renal tubules of rat kidney and co-immunoprecipitated in kidney epithelial cells. The wild-type and PHAII-causing mutant, but not the kinase-dead mutant, phosphorylated claudin-7. We have identified ser(206) in the COOH-terminus of claudin-7 as a putative phosphorylation site for WNK4. More importantly, disease-causing mutant enhanced claudin-7 phosphorylation and significantly increased paracellular permeability to Cl(-).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.07.014DOI Listing

Publication Analysis

Top Keywords

claudin-7
5
wnk4
4
wnk4 phosphorylates
4
phosphorylates ser206
4
ser206 claudin-7
4
claudin-7 promotes
4
promotes paracellular
4
paracellular cl-
4
cl- permeability
4
permeability mutations
4

Similar Publications

Purpose: Kuiyangling is a traditional Chinese medicine formula used for the treatment of ulcerative colitis, but the specific mechanism remains unclear. Imbalance in NETs regulation is one of the important factors contributing to the onset of ulcerative colitis (UC). The HuR/VDR signaling pathway plays a significant role in restoring the intestinal mucosal barrier in UC.

View Article and Find Full Text PDF

Oat beta-glucans (OBGs) are known for their beneficial effects on gut health, including anti-inflammatory and prebiotic effects. The aim of this study was to evaluate the impact of two doses (1% or 3% /) of dietary low-molar-mass OBG supplementation on colorectal cancer (CRC) development, immune cell profiles, intestinal barrier protein expression, and microbiota composition in a rat model of CRC induced by azoxymethane (AOM). Microbiome analysis revealed significant differences between the control and CRC groups.

View Article and Find Full Text PDF

Invasive micropapillary carcinoma of the breast is characterized by clusters of cells presenting with inverted polarity. Although the apico-basal polarity is a fundamental property of the epithelium, the biological alterations leading to the inside-out pattern observed in invasive micropapillary carcinoma (IMPC) remain mostly unknown. The regulation of tight junctions in polarity formation and maintenance is acknowledged.

View Article and Find Full Text PDF

Immune exclusion inhibits anti-tumor immunity and response to immunotherapy, but its mechanisms remain poorly defined. Here, we demonstrate that Trophoblast Cell-Surface Antigen 2 (TROP2), a key target of emerging anti-cancer Antibody Drug Conjugates (ADCs), controls barrier-mediated immune exclusion in Triple-Negative Breast Cancer (TNBC) through Claudin 7 association and tight junction regulation. TROP2 expression is inversely correlated with T cell infiltration and strongly associated with outcomes in TNBC.

View Article and Find Full Text PDF

Apical integrins as a switchable target to regulate the epithelial barrier.

J Cell Sci

December 2024

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!