The fossil record provides unique clues about the primitive pattern of lobed fins, the precursors of digit-bearing limbs. Such information is vital for understanding the evolutionary transition from fish fins to tetrapod limbs, and it guides the choice of model systems for investigating the developmental changes underpinning this event. However, the evolutionary preconditions for tetrapod limbs remain unclear. This uncertainty arises from an outstanding gap in our knowledge of early lobed fins: there are no fossil data that record primitive pectoral fin conditions in coelacanths, one of the three major groups of sarcopterygian (lobe-finned) fishes. A new fossil from the Middle-Late Devonian of Wyoming preserves the first and only example of a primitive coelacanth pectoral fin endoskeleton. The strongly asymmetrical skeleton of this fin corroborates the hypothesis that this is the primitive sarcopterygian pattern, and that this pattern persisted in the closest fish-like relatives of land vertebrates. The new material reveals the specializations of paired fins in the modern coelacanth, as well as in living lungfishes. Consequently, the context in which these might be used to investigate evolutionary and developmental relationships between vertebrate fins and limbs is changed. Our data suggest that primitive actinopterygians, rather than living sarcopterygian fishes and their derived appendages, are the most informative comparators for developmental studies seeking to understand the origin of tetrapod limbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-142X.2007.00169.x | DOI Listing |
Heliyon
August 2024
Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy.
The thermal performance of a PCM-based triple-tube lobed heat exchanger storage system is here simulated and optimized, including performance improvements via lobed surfaces, Y-shaped fins, dispersed multi-walled carbon nanotubes, and metal foams, to be used in combination, or singly. Such computations are done with the finite volume method under different operating conditions. The reason behind this study is to look for solutions to improve the poor thermal performance of phase change materials (PCMs) as thermal energy storage materials, that limits their compactness and instantaneous heat stored/released.
View Article and Find Full Text PDFbioRxiv
July 2024
Boston College, Chestnut Hill MA 02467.
Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center.
View Article and Find Full Text PDFSci Rep
April 2024
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran.
This study discusses an evacuated tube collector-type solar water heater (ETCSWH) using a phase change material (PCM) chamber with fins, nanofluid, and nano-enhanced phase change material (NEPCM). First, the charging phenomena in a horizontal triplex tube heat exchanger (TTHX) equipped with fins, natural convection, and an ETCSWH system without PCM is simulated to validate the solution. The impact of adding fins and nanoparticles with a volume fraction of 3% of AlO and Cu to paraffin wax and water-based fluid, respectively, on the unit's efficiency has been examined.
View Article and Find Full Text PDFSci Adv
January 2024
Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
Ancient bony fishes had heterocercal tails, like modern sharks and sturgeons, with asymmetric caudal fins and a vertebral column extending into an elongated upper lobe. Teleost fishes, in contrast, developed a homocercal tail characterized by two separate equal-sized fin lobes and the body axis not extending into the caudal fin. A similar heterocercal-to-homocercal transition occurs during teleost ontogeny, although the underlying genetic and developmental mechanisms for either transition remain unresolved.
View Article and Find Full Text PDFbioRxiv
October 2023
Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford CA 94305 USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!