First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs.

Evol Dev

Committee on Evolutionary Biology, University of Chicago, 1025 E 57th St., Chicago, IL 60637, USA.

Published: September 2007

The fossil record provides unique clues about the primitive pattern of lobed fins, the precursors of digit-bearing limbs. Such information is vital for understanding the evolutionary transition from fish fins to tetrapod limbs, and it guides the choice of model systems for investigating the developmental changes underpinning this event. However, the evolutionary preconditions for tetrapod limbs remain unclear. This uncertainty arises from an outstanding gap in our knowledge of early lobed fins: there are no fossil data that record primitive pectoral fin conditions in coelacanths, one of the three major groups of sarcopterygian (lobe-finned) fishes. A new fossil from the Middle-Late Devonian of Wyoming preserves the first and only example of a primitive coelacanth pectoral fin endoskeleton. The strongly asymmetrical skeleton of this fin corroborates the hypothesis that this is the primitive sarcopterygian pattern, and that this pattern persisted in the closest fish-like relatives of land vertebrates. The new material reveals the specializations of paired fins in the modern coelacanth, as well as in living lungfishes. Consequently, the context in which these might be used to investigate evolutionary and developmental relationships between vertebrate fins and limbs is changed. Our data suggest that primitive actinopterygians, rather than living sarcopterygian fishes and their derived appendages, are the most informative comparators for developmental studies seeking to understand the origin of tetrapod limbs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-142X.2007.00169.xDOI Listing

Publication Analysis

Top Keywords

lobed fins
12
tetrapod limbs
12
primitive coelacanth
8
fins limbs
8
pectoral fin
8
fins
6
limbs
6
primitive
5
discovery primitive
4
fin
4

Similar Publications

The thermal performance of a PCM-based triple-tube lobed heat exchanger storage system is here simulated and optimized, including performance improvements via lobed surfaces, Y-shaped fins, dispersed multi-walled carbon nanotubes, and metal foams, to be used in combination, or singly. Such computations are done with the finite volume method under different operating conditions. The reason behind this study is to look for solutions to improve the poor thermal performance of phase change materials (PCMs) as thermal energy storage materials, that limits their compactness and instantaneous heat stored/released.

View Article and Find Full Text PDF

Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center.

View Article and Find Full Text PDF

This study discusses an evacuated tube collector-type solar water heater (ETCSWH) using a phase change material (PCM) chamber with fins, nanofluid, and nano-enhanced phase change material (NEPCM). First, the charging phenomena in a horizontal triplex tube heat exchanger (TTHX) equipped with fins, natural convection, and an ETCSWH system without PCM is simulated to validate the solution. The impact of adding fins and nanoparticles with a volume fraction of 3% of AlO and Cu to paraffin wax and water-based fluid, respectively, on the unit's efficiency has been examined.

View Article and Find Full Text PDF

Ancient bony fishes had heterocercal tails, like modern sharks and sturgeons, with asymmetric caudal fins and a vertebral column extending into an elongated upper lobe. Teleost fishes, in contrast, developed a homocercal tail characterized by two separate equal-sized fin lobes and the body axis not extending into the caudal fin. A similar heterocercal-to-homocercal transition occurs during teleost ontogeny, although the underlying genetic and developmental mechanisms for either transition remain unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists want to understand how animals develop new traits, both by losing old ones and gaining new ones.
  • Sea robins, a type of fish, have grown new legs and special features in their brains to help them move.
  • This study uses advanced techniques to discover the genes that help sea robins form their unique legs and shows how these traits differ between species of sea robins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!