Deep tissue injury.

Rehabil Nurs

Drake Center, Cinncinnati, OH, USA.

Published: September 2007

Download full-text PDF

Source
http://dx.doi.org/10.1002/j.2048-7940.2007.tb00166.xDOI Listing

Publication Analysis

Top Keywords

deep tissue
4
tissue injury
4
deep
1
injury
1

Similar Publications

Objectives: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.

Materials And Methods: The first stage involved tooth localization with the YOLOv8 model, followed by pulp stone classification using ResNeXt.

View Article and Find Full Text PDF

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

As surgeons, we strive to recognize and correct any mistakes that may occur before completing an operation, and importantly, do our best to avoid irreversible mistakes. Over-resection of the femoral cam lesion in patients having hip arthroscopy for femoroacetabular impingement syndrome has been considered irreversible. While cam under-resection is a technical complication of femoroacetabular impingement surgery to be avoided, avoiding this at the expense of over-resection of the proximal femur is of great concern.

View Article and Find Full Text PDF

Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures in ST data nor entirely employ features embedded in different layers.

Results: This article introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention autoencoder and multiscale deep subspace clustering.

View Article and Find Full Text PDF

Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!