Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The heme protein myeloperoxidase (MPO) contributes critically to O(2)-dependent neutrophil antimicrobial activity. Two Japanese adults were identified with inherited MPO deficiency because of mutations at Arg-499 or Gly-501, conserved residues near the proximal histidine in the heme pocket. Because of the proximity of these residues to a critical histidine in the heme pocket, we examined the biosynthesis, function, and spectral properties of the peroxidase stably expressed in human embryonic kidney cells. Biosynthesis of normal MPO by human embryonic kidney cells faithfully mirrored events previously identified in cells expressing endogenous MPO. Mutant apopro-MPO was 90 kDa and interacted normally with the molecular chaperones ERp57, calreticulin, and calnexin in the endoplasmic reticulum. However, mutant precursors were not proteolytically processed into subunits of MPO, although secretion of the unprocessed precursors occurred normally. Although delta-[(14)C]aminolevulinic acid incorporation demonstrated formation of pro-MPO in both mutants, neither protein was enzymatically active. The Soret band for each mutant was shifted from the normal 430 to approximately 412 nm, confirming that heme was incorporated but suggesting that the number of covalent bonds or other structural aspects of the heme pocket were disrupted by the mutations. These studies demonstrate that despite heme incorporation, mutations in the heme environs compromised the oxidizing potential of MPO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M701984200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!