Factor Va residues 311-325 represent an activated protein C binding region.

J Biol Chem

Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037. Electronic address:

Published: September 2007

Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC. As reported, VP311-325, a peptide comprising residues 311-325 in fVa, dose-dependently and potently inhibited fVa-dependent prothrombin activation by fXa in the absence of APC. This peptide also inhibited the inactivation of fVa by APC, suggesting that this region of fVa interacts with APC. The peptide inhibited the APC-dependent cleavage of both Arg(506) and Arg(306) because inhibition was observed with plasma-derived fVa and recombinant R506Q and RR306/679QQ fVa. VP311-325 altered the fluorescence emission of dansyl-active site-labeled APC(i) but not a dansyl-active site-labeled thrombin control, showing that the peptide binds to APC(i). This peptide also inhibited the resonance energy transfer between membrane-bound fluorescein-labeled fVa (donor) and rhodamine-active site-labeled S360C-APC (acceptor). These data suggest that peptide VP311-325 represents both an APC and fXa binding region in fVa.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M704316200DOI Listing

Publication Analysis

Top Keywords

fva
13
peptide inhibited
12
residues 311-325
8
activated protein
8
binding region
8
apc
8
heavy chain
8
arg506 arg306
8
fva inactivation
8
inactivation apc
8

Similar Publications

Predictions to Increase Lasso Peptide Production in the Heterologous Host Streptomyces coelicolor M1152.

Biotechnol Bioeng

December 2024

Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.

Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome-scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of Streptomyces coelicolor M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host Streptomyces coelicolor M1152.

View Article and Find Full Text PDF

Objective: To investigate retinal vascular permeability mapping as a potential biomarker for diabetic retinopathy in subjects with diabetes with no signs of retinopathy and with mild nonproliferative retinopathy.

Design: This is a case-control study.

Subjects: Participants included 7 healthy controls, 22 subjects with diabetes mellitus and no clinical signs of retinopathy (DMnoDR), and 7 subjects with mild nonproliferative diabetic retinopathy (NPDR).

View Article and Find Full Text PDF

Background And Aims: In Central Europe, the drought-tolerant downy oak (Quercus pubescens) is at the northern edge of its natural distribution range, often growing in small and spatially isolated populations. Here, we elucidate how the population genetic structure of Central European Q. pubescens was shaped by geographic barriers, genetic drift and introgression with the closely related sessile oak (Q.

View Article and Find Full Text PDF

This report presents results of parent-implemented behavioral treatments for a child with cortical visual impairment (CVI), intellectual disability (ID), epilepsy, and autism spectrum disorder (ASD) associated with a pathogenic variant in the SCN2A gene (i.e., SCN2A-Related Disorder).

View Article and Find Full Text PDF

Culture conditions have a profound impact on therapeutic protein production and glycosylation, a critical therapeutic-quality attribute, especially for monoclonal antibodies (mAbs). While the critical culture parameter of pH has been known since the early 1990s to affect protein glycosylation and production, detailed glycan and metabolic characterization and mechanistic understanding are critically lacking. Here, Chinese Hamster Ovary (CHO) cells were grown in bioreactors at pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!