The presence of a chondroitin sulfate (CS) chain on human thyroglobulin (Tg) distinguishes it from Tg of other species; the role played by this chain in normal thyroid function is unclear. In the present study, we determined the structure of the CS oligosaccharides in human thyroid-derived Tg. Q-Sepharose anion exchange column chromatography of thyroid extracts indicated that the negative charge of human Tg was primarily due to the presence of the CS chain. Interestingly, the Tg of papillary carcinomas was less negatively charged, suggesting that its CS side chain was less sulfated. Structural analysis of the CS in Tg revealed that its most abundant disaccharide is the DeltaDi-0S unit (50.2 +/- 18.3%), which is not sulfated. The DeltaDi-0S, DeltaDi-6S (31.7 +/- 13.7%) and DeltaDi-diSD (12.8 +/- 4.3%) units comprise more than 90% of the disaccharides in normal Tg. However, the DeltaDi-6S (0.0-21.2%) and DeltaDi-diSD (0.0-7.7%) units were significantly reduced in Tg extracted from papillary thyroid carcinomas, whereas DeltaDi-0S (86.0 +/- 21.3%) was increased. These results suggest that the Tg in papillary carcinomas has a less sulfated CS side chain and, by virtue of that fact, is less negatively charged. What role this change in carcinoma cells has in their transformation and spread remains to be determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160072PMC
http://dx.doi.org/10.1111/j.1349-7006.2007.00574.xDOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
8
papillary thyroid
8
thyroid carcinomas
8
papillary carcinomas
8
negatively charged
8
side chain
8
chain
5
reduced sulfation
4
sulfation chondroitin
4
sulfate thyroglobulin
4

Similar Publications

The trend of an annual increase in the detection of new cases of osteoarthritis (OA) and an increase in the number of patients with chronic lower back pain (LBP) calls for the search for new drugs and pharmaconutraceuticals with anti-inflammatory and chondroprotective properties. In 2019, approaches to the treatment of pain in OA significantly changed. In international and Russian clinical guidelines (CG), pharmaconutraceutical chondroitin sulfate (CS) and glucosamine sulfate (GS) are recommended for OA of different localization as a basic therapy.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.

View Article and Find Full Text PDF

Mass spectrometry-based investigation of the heterogeneous glycoproteome from complex biological specimens is a robust approach to mapping the structure, function, and dynamics of the glycome and proteome. Sampling whole wet tissues often provides a large amount of starting material; however, there is a reasonable variability in tissue handling prior to downstream processing steps, and it is difficult to capture all the different biomolecules from a specific region. The on-slide tissue digestion approach, outlined in this protocol chapter, is a simple and cost-effective method that allows comprehensive mapping of the glycoproteome from a single spot of tissue of 1 mm or greater diameter.

View Article and Find Full Text PDF

Vildagliptin is a drug of choice in type II diabetes mellitus that suffers from limitations like short half-life with reduced bioavailability. To improve the therapeutic performance of vildagliptin, this study aimed to synthesize chitosan nanoparticles (NPs) loaded hydrogel by using biological polysaccharides like sodium alginate (SA) and chondroitin sulfate (CS). The NPs were prepared by ionic gelation method and various characterization tests like surface morphology, size and zeta potential, entrapment efficiency, and in-vitro drug release studies were performed.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!