This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high-throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high-throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200635 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2007.06.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!