Purpose: It is unclear whether filling and emptying are important to bladder development. We tested this in an experimental preparation.
Material And Methods: Urinary diversion was performed in 7 fetal lambs at 90 days of gestation and 6 unoperated fetal lambs served as controls. Transmural sections were analyzed for changes in tissue layer thickness and/or composition after 14 days of urinary diversion. Matrix mRNA levels (collagen I and III, and FN) as well as the cytokines/growth factors IGF-1, EGR-1, WT-1 and BCL-2 were quantified by real-time polymerase chain reaction. Hydroxyproline measurements of total collagen and collagen subtype quantification were done by enzyme-linked immunosorbent assay.
Results: Diverted fetal bladders showed a 27% and 57% decrease in mucosal and detrusor muscle layer thickness, respectively. In contrast, there was a 270% increase in serosal layer thickness in diverted bladders. The mRNA levels of COL1A1, COL3A1, IGF-1, EGR-1 and the anti-apoptotic gene BCL-2 were increased significantly in the serosal/detrusor layer of diverted bladders. In the mucosa levels of these mRNAs remained unchanged except for those of FN and WT-1, which were significantly decreased and increased, respectively. Total collagen, and type I and III collagen protein levels were significantly increased in diverted bladders.
Conclusions: The lack of mechanical loading in diverted bladders leads to the arrest of detrusor smooth muscle growth, and concurrent fibrosis and thickening of the serosal layer. Changes in the levels of IGF-1, BCL-2 and EGR-1 likely have regulatory roles that affect the smooth muscle phenotype in the detrusor layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.juro.2007.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!