We carried out ventilation and perfusion scintigraphies and pulmonary function tests in 20 diabetics under 50 years of age. 99mTc-MAA perfusion scintigrams showed evidence of minimal nonuniformity (MNU) in four cases (20%) and nonsegmental defect (NSD) in eight cases (40%). There was a ventilation defect in the single-breath image in one case (5%) and a delayed washout in three cases (15%) upon 133Xe ventilation scintigram. In the NSD group, the mean diffusing capacity value was abnormally low and the mean duration of the diabetes was long compared with other groups. The frequency of perfusion defects was higher than that of ventilation abnormalities; moreover, abnormal findings on ventilation scintigrams were very mild compared with those of perfusion defects. Perfusion defects correlated significantly with a decrease in diffusing capacity. These findings suggest that the disturbance in pulmonary arterial perfusion caused a decrease in diffusing capacity in diabetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF03164621 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing Normal University, School of Chemistry and Materials Science, CHINA.
Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.
View Article and Find Full Text PDFSmall
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fujian University of Technology, College of Ecological Environment and Urban Construction, 69, Xuefu South Road, Fuzhou 350118, China, 350118, Fuzhou, CHINA.
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!