Fenflumizole, [2-(2,4-difluorophenyl)4,5-bis(4-methoxyphenyl)imidazole] is a nonsteroidal, anti-inflammatory analgesic. It reacts quantitatively with 1O2 forming 2-(2,4-difluorophenyl)-4-hydroperoxy-4,5-bis(4-methoxyphenyl)imidazole in a reversible reaction. In ethanol solution at ambient temperatures, the peroxide regenerates parent fenflumizole and 1O2 together with minor quantities of other products. The structures of those products point to the intermediacy of a 1,3-endoperoxide and a dioxetane. These observations may be relevant to the biological activity of fenflumizole.

Download full-text PDF

Source
http://dx.doi.org/10.3891/acta.chem.scand.45-0627DOI Listing

Publication Analysis

Top Keywords

peroxide chemistry
4
chemistry triaryl-substituted
4
triaryl-substituted imidazoles
4
fenflumizole
4
imidazoles fenflumizole
4
fenflumizole non-steroidal
4
non-steroidal anti-inflammatory
4
anti-inflammatory agent
4
agent fenflumizole
4
fenflumizole [2-24-difluorophenyl45-bis4-methoxyphenylimidazole]
4

Similar Publications

Experimental studies of chronic noise exposure in modern urban life testified about oxidative stress due to the corresponding hormones effects leading to accumulation of reactive oxygen species and endothelial dysfunction. This study aims to evaluate the protective effect of α2-adrenoblockers to modulate oxidative stress and corticosterone levels due to chronic noise exposure. To achieve this, we examined the effects of beditin (2-aminothiozolyl-1,4-benzodioxane) and mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride), along with changes in corticosterone, Ca2 + content, and morphological alterations in various tissues under noise-induced stress.

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects.

Mar Drugs

January 2025

Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.

Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development.

View Article and Find Full Text PDF

The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.

View Article and Find Full Text PDF

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!