Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb1619 | DOI Listing |
Eur Urol Open Sci
January 2025
Merck & Co. Inc, Rahway, NJ, USA.
Background And Objective: Treatment landscape in advanced prostate cancer (PC) is evolving. There is limited understanding of the factors influencing decision-making for genetic/genomic testing and the barriers to recommending testing and treatment in international real-world clinical practice following the approval of poly-adenosine diphosphate-ribose polymerase inhibitors (PARPi) for metastatic castration-resistant PC (mCRPC). This work aims to assess genetic/genomic testing patterns and methods, including for homologous recombination repair mutation (HRRm), and treatment decisions among physicians caring for patients with PC across the USA, Europe, and Asia.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.
View Article and Find Full Text PDFMol Med
January 2025
Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.
View Article and Find Full Text PDFJ Periodontal Res
January 2025
Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.
Aim: To assess tissue perfusion changes and wound healing biomarker levels after root coverage procedures with coronally advanced flap in combination with the cross-linked xenogeneic collagen matrix (CCMX), loaded either with a placebo or recombinant human platelet-derived growth factor-BB (rhPDGF).
Methods: This study was designed as a secondary analysis from a previously published clinical trial, and it assessed the tissue perfusion changes over 6 months around multiple gingival recession defects, treated with either with CCMX alone (control) or with CCMX + rhPDGF (test). High frequency Doppler ultrasonography (HFUS) scans were obtained at sites of interest at baseline, 2 weeks, 3 months, and 6 months after surgery.
Appl Environ Microbiol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.
is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in . Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor P were incorporated into the Cas9 expression cassette, which reduced its toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!