Contractile airway smooth muscle (ASM) cells retain the ability for phenotype plasticity in response to multiple stimuli, which equips them with capacity to direct modeling and remodeling during development, and in disease states such as asthma. We have shown that endogenously expressed laminin is required for maturation of human ASM cells to a contractile phenotype, as occurs during ASM thickening in asthma. In this study, we profiled the expression of laminin-binding integrins alpha3beta1, alpha6beta1, and alpha7beta1, and tested whether they are required for laminin-induced myocyte maturation. Immunoblotting revealed that myocyte maturation induced by prolonged serum withdrawal, which was marked by the accumulation of contractile phenotype marker protein desmin, was also associated with the accumulation of alpha3A, alpha6A, and alpha7B. Flow cytometry revealed that alpha7B expression was a distinct feature of individual myocytes that acquired a contractile phenotype. siRNA knockdown of alpha7, but not alpha3 or alpha6, suppressed myocyte maturation. Thus, alpha7B is a novel marker of the contractile phenotype, and alpha7 expression is essential for human ASM cell maturation, which is a laminin-dependent process. These observations provide new insight into mechanisms that likely underpin normal development and remodeling associated with airways disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219552PMC
http://dx.doi.org/10.1165/rcmb.2007-0165OCDOI Listing

Publication Analysis

Top Keywords

contractile phenotype
20
myocyte maturation
12
asm cells
8
human asm
8
contractile
6
phenotype
6
maturation
5
laminin-binding integrin
4
integrin alpha7
4
alpha7 required
4

Similar Publications

Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.

Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.

View Article and Find Full Text PDF

Vascular calcification significantly increases the incidence of cardiovascular disease and all-cause mortality patients with chronic kidney disease(CKD), severely affecting their health and lifespan. However, the mechanisms underlying vascular calcification in CKD remain incompletely understood, and the available therapeutic agents are limited. Research has found that the transformation of vascular smooth muscle cells(VSMCs) from a contractile phenotype to an osteoblast-like phenotype is a key step in CKD-related vascular calcification.

View Article and Find Full Text PDF

Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation.

View Article and Find Full Text PDF

Large Variations in Phenylalanine Concentrations Associate Adverse Cardiac Remodelling in Adult Patients With Phenylketonuria-A Long-Term CMR Study.

J Cachexia Sarcopenia Muscle

February 2025

Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.

Background: Despite a phenylalanine (Phe) restrictive diet, most adult patients with 'classical' phenylketonuria (PKU) maintain life-long Phe concentrations above the normal range and receive tyrosine (Tyr) and protein-enriched diets to maintain acceptable concentrations and ensure normal development. While these interventions are highly successful in preventing adverse neuropsychiatric complications, their long- term consequences are incompletely explored. We observed early cardiomyopathic characteristics and associated hemodynamic changes in adult PKU patients and present here the results of a longitudinal evaluation of cardiac phenotype.

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!