The continuing case for the Renshaw cell.

J Physiol

Department of Neuroscience, Cell Biology & Physiology, Boonshoft School of Medicine, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435, USA.

Published: October 2007

Renshaw cell properties have been studied extensively for over 50 years, making them a uniquely well-defined class of spinal interneuron. Recent work has revealed novel ways to identify Renshaw cells in situ and this in turn has promoted a range of studies that have determined their ontogeny and organization of synaptic inputs in unprecedented detail. In this review we illustrate how mature Renshaw cell properties and connectivity arise through a combination of activity-dependent and genetically specified mechanisms. These new insights should aid the development of experimental strategies to manipulate Renshaw cells in spinal circuits and clarify their role in modulating motor output.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277064PMC
http://dx.doi.org/10.1113/jphysiol.2007.136200DOI Listing

Publication Analysis

Top Keywords

renshaw cell
12
cell properties
8
renshaw cells
8
renshaw
5
continuing case
4
case renshaw
4
cell renshaw
4
properties studied
4
studied extensively
4
extensively years
4

Similar Publications

Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency.

View Article and Find Full Text PDF

Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how neural circuits in mice adapt during early stages of progressive motoneuron degeneration, which helps maintain normal movement despite cell loss.
  • It finds that, early on, a specific pre-motor circuit's neurotransmission is significantly reduced due to decreased density of glycine receptors, but this impairment is not widespread across all spinal inhibitory circuits.
  • Later stages of the disease show recovery in neurotransmission and increased excitation of motoneurons, indicating that spinal microcircuits undergo specific compensatory changes that help preserve muscle force output.
View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies and categorizes four major subsets of V1 interneurons in mice based on their development, genetic tracing, and connections with motoneurons and muscle afferents.
  • - It highlights that the timing of neurogenesis (when the neurons are born) does not necessarily determine their targeting to motoneurons, as seen with different functions of early and late born interneurons.
  • - The research emphasizes the complexity of the Foxp2-V1 interneuron subgroup, which plays a critical role in inhibitory pathways and has diverse functions, thereby improving our understanding of the interneuron's role in motor control.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!