Diguanylate cyclases (DGCs) are key enzymes of second messenger signaling in bacteria. Their activity is responsible for the condensation of two GTP molecules into the signaling compound cyclic di-GMP. Despite their importance and abundance in bacteria, catalytic and regulatory mechanisms of this class of enzymes are poorly understood. In particular, it is not clear if oligomerization is required for catalysis and if it represents a level for activity control. To address this question we perform in vitro and in vivo analysis of the Caulobacter crescentus diguanylate cyclase PleD. PleD is a member of the response regulator family with two N-terminal receiver domains and a C-terminal diguanylate cyclase output domain. PleD is activated by phosphorylation but the structural changes inflicted upon activation of PleD are unknown. We show that PleD can be specifically activated by beryllium fluoride in vitro, resulting in dimerization and c-di-GMP synthesis. Cross-linking and fractionation experiments demonstrated that the DGC activity of PleD is contained entirely within the dimer fraction, confirming that the dimer represents the enzymatically active state of PleD. In contrast to the catalytic activity, allosteric feedback regulation of PleD is not affected by the activation status of the protein, indicating that activation by dimerization and product inhibition represent independent layers of DGC control. Finally, we present evidence that dimerization also serves to sequester activated PleD to the differentiating Caulobacter cell pole, implicating protein oligomerization in spatial control and providing a molecular explanation for the coupling of PleD activation and subcellular localization.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M704702200DOI Listing

Publication Analysis

Top Keywords

diguanylate cyclase
12
pled
11
cyclase pled
8
pled activated
8
pled activation
8
activation
5
activation diguanylate
4
pled phosphorylation-mediated
4
dimerization
4
phosphorylation-mediated dimerization
4

Similar Publications

RpoN mediates biofilm formation by directly controlling gene cluster and c-di-GMP synthetic metabolism in .

Biofilm

June 2025

State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.

is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.

View Article and Find Full Text PDF

Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis.

J Agric Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.

Article Synopsis
  • Cyclic diguanosine monophosphate (c-di-GMP) plays a vital role in regulating the synthesis of bacterial cellulose (BC) and is managed by enzymes known as diguanylate cyclases (DGCs) and phosphodiesterases (PDEs).
  • A study analyzed ten proteins with GGDEF-EAL tandem domains, revealing five with DGC activity and five with PDE activity, with one protein (GE03) displaying both functions.
  • Mutant strains lacking GGDEF-EAL proteins showed significant changes in BC production, while knocking out PDE proteins resulted in a 48.1% increase in BC titer, enhancing the understanding of c-di-GMP's role in BC
View Article and Find Full Text PDF

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

A novel Diguanylate cyclase VdcR has multifaceted regulatory functions in the pathogenicity of Vibrio vulnificus.

J Microbiol Immunol Infect

November 2024

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan. Electronic address:

Background: Vibrio vulnificus is a Gram-negative pathogen that infects humans through foodborne or wound infections. Victims of V. vulnificus infections face significant health risks, including cellulitis and septicemia, which have rapid disease progression and high mortality rates.

View Article and Find Full Text PDF

Tetracycline induces operon expression to promote biofilm formation in .

Appl Environ Microbiol

November 2024

National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China.

The overuse and wanton discharge of antibiotics produces a threat to bacteria in the environment, which, in turn, stimulates the more rapid emergence of antibiotic-resistant bacteria. actively forms biofilms to protect the population under tetracycline stress, but the molecular mechanism remains unclear. This study found that tetracycline at sub-minimal inhibitory concentrations increased cyclic diguanylate (c-di-GMP), a second messenger that positively regulates biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!