Recent preclinical studies have demonstrated that convection-enhanced delivery (CED) can be used to perfuse the brain and brainstem with therapeutic agents while simultaneously tracking their distribution using coinfusion of a surrogate magnetic resonance (MR) imaging tracer. The authors describe a technique for the successful clinical application of this drug delivery and monitoring paradigm to the brainstem. Two patients with progressive intrinsic brainstem lesions (one with Type 2 Gaucher disease and one with a diffuse pontine glioma) were treated with CED of putative therapeutic agents mixed with Gd-diethylenetriamene pentaacetic acid (DTPA). Both patients underwent frameless stereotactic placement of MR imaging-compatible outer guide-inner infusion cannulae. Using intraoperative MR imaging, accurate cannula placement was confirmed and real-time imaging during infusion clearly demonstrated progressive filling of the targeted region with the drug and Gd-DTPA infusate. Neither patient had clinical or imaging evidence of short- or long-term infusate-related toxicity. Using this technique, CED can be used to safely perfuse targeted regions of diseased brainstem with therapeutic agents. Coinfused imaging surrogate tracers can be used to monitor and control the distribution of therapeutic agents in vivo. Patients with a variety of intrinsic brainstem and other central nervous system disorders may benefit from a similar treatment paradigm.

Download full-text PDF

Source
http://dx.doi.org/10.3171/JNS-07/07/0190DOI Listing

Publication Analysis

Top Keywords

therapeutic agents
16
intrinsic brainstem
12
brainstem lesions
8
brainstem therapeutic
8
brainstem
6
imaging
5
real-time image-guided
4
image-guided direct
4
direct convective
4
convective perfusion
4

Similar Publications

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.

View Article and Find Full Text PDF

SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy.

Cell Death Differ

January 2025

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!