Selective differentiation of central nervous system-derived stem cells in response to cues from specific regions of the developing brain.

J Neurosurg

Division of Neurological Surgery, Veterans Administration San Diego Health Care System, California, USA.

Published: July 2007

Object: Each region of the brain is distinguished by specific and distinct markers and functions. The authors hypothesized that each region possesses unique trophic properties that dictate and maintain its development. To test this hypothesis, they isolated central nervous system (CNS) stem cells from fetal rodents, and these rat CNS-derived stem cells (RSCs) were placed in coculture with primary cultures of the developing neonatal hippocampus and hypothalamus to determine whether region-specific primary cells would direct the differentiation of stem cells in a region-specific manner.

Methods: Primary cultures were first established from the neonatal (3-7 days postnatal) hippocampus and hypothalamus. Rodent CNS stem cells, which had been genetically engineered to express green fluorescent protein, were then placed in coculture with the primary CNS cells. The expression of region-specific markers in the RSCs was then evaluated after 2 weeks using immunocytochemistry. Data from previous studies have indicated that primary adult cells lack a differentiation-inducing capacity.

Results: When placed in coculture with primary CNS cells, RSCs began to express both neuronal (MAP2) and glial (glial fibrillary acidic protein) markers. Those that were placed in coculture with hippocampal cells expressed region-specific markers such as gamma-aminobutyric acid, whereas those placed in coculture with hypothalamic cells expressed growth hormone-releasing hormone primarily in the hypothalamus. Conclusions. Pluripotential RSCs were induced to express region-specific phenotypes on coculture with primary cells derived from the developing hippocampus and hypothalamus. The differentiation of RSCs into specific lineages on exposure to specific cell types is likely modulated through direct cell-cell contact. Secreted factors from the primary neural cells may also play a role in this induction. Such a differentiation influence is also likely age dependent.

Download full-text PDF

Source
http://dx.doi.org/10.3171/JNS-07/07/0145DOI Listing

Publication Analysis

Top Keywords

stem cells
20
coculture primary
16
cells
13
hippocampus hypothalamus
12
central nervous
8
cns stem
8
cells rscs
8
primary
8
primary cultures
8
primary cells
8

Similar Publications

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results.

View Article and Find Full Text PDF

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!