Hatchlings of the painted turtle, Chrysemys picta, hibernate terrestrially and can survive subfreezing temperatures by supercooling or by tolerating the freezing of their tissues. Whether supercooled or frozen, an ischemic hypoxia develops because tissue perfusion is limited by low temperature and/or freezing. Oxidative stress can occur if hatchlings lack sufficient antioxidant defenses to minimize or prevent damage by reactive oxygen species. We examined the antioxidant capacity and indices of oxidative damage in hatchling C. picta following survivable, 48 h bouts of supercooling (-6 degrees C), freezing (-2.5 degrees C), or hypoxia (4 degrees C). Samples of plasma, brain, and liver were collected after a 24 h period of recovery (4 degrees C) and assayed for Trolox-equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), and carbonyl proteins. Antioxidant capacity did not vary among treatments in any of the tissues studied. We found a significant increase in TBARS in plasma, but not in the brain or liver, of frozen/thawed hatchlings as compared to untreated controls. No changes were found in the concentration of TBARS or carbonyl proteins in supercooled or hypoxia-exposed hatchlings. Our results suggest that hatchling C. picta have a well-developed antioxidant defense system that minimizes oxidative damage during hibernation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-007-0185-0 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.
Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.
View Article and Find Full Text PDFJACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
Introduction: (Lour.) Merr is a common traditional Chinese medicine with anti-tumor, anti-inflammatory and antioxidant activities. However, no related studies reported the potential application effect of on meat ducks.
View Article and Find Full Text PDFToxicol Rep
December 2024
Department of Occupational Health and Ergonomic, Qazvin Medical University, Qazvin, Iran.
Occupational exposures are generally complex, workers are exposed with more than one hazardous agent in work environment. Combined exposure to noise and benzene is common in occupational environments. Sub-acute exposure to benzene vapors can induce oxidative stress in serum.
View Article and Find Full Text PDFAquac Nutr
December 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
A 56-day culture experiment was conducted to assess the effects of lysophospholipid added to a low-fishmeal diet on growth performance, hepatopancreas health, and intestinal microbiome of . Three experimental diets were set up in this study: normal fishmeal positive control diet (20% fishmeal, P), low fishmeal negative control diet (12% fishmeal, N), and low fishmeal + lysophospholipid diet (12% fishmeal with 0.1% lysophospholipid, L).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!