The HOP2 and MND1 genes are indispensable for meiotic recombination. The products of these genes associate to form a stable heterodimeric complex that binds DNA and stimulates the recombinase activity of Rad51 and Dmc1. Here we conduct molecular studies to delineate the action mechanism of the Hop2-Mnd1 complex. We present evidence to implicate Hop2 as the major DNA-binding subunit and Mnd1 as the prominent Rad51 interaction entity. Hop2-Mnd1 stabilizes the Rad51-single-stranded DNA (ssDNA) nucleoprotein filament, the catalytic intermediate in recombination reactions. We also show that Hop2-Mnd1 enhances the ability of the Rad51-ssDNA nucleoprotein filament to capture duplex DNA, an obligatory step in the formation of the synaptic complex critical for DNA joint formation. Thus, our results unveil a bipartite mechanism of Hop2-Mnd1 in homologous DNA pairing: stabilization of the Rad51 presynaptic filament and duplex DNA capture to enhance synaptic complex formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920169 | PMC |
http://dx.doi.org/10.1101/gad.1563007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!