5,6-Di-methylxanthenone-4-acetic acid (DMXAA) is a small molecule in the flavanoid class that has antitumor activity. Although classified as a "vascular disrupting agent," we have recently conducted studies showing that DMXAA has remarkable efficacy in a range of tumors, working primarily as an immune modulator that activates tumor-associated macrophages and induces a subsequent CD8(+) T-cell-mediated response. To more completely analyze the effect of DMXAA on CD8(+) T-cell generation, we treated mice bearing tumors derived from EG7 thymoma cells that express the well-characterized chicken ovalbumin neotumor antigen. Treatment with DMXAA led to cytokine release, tumor cell necrosis, and ultimately reduction in tumor size that was lymphocyte dependent. Within 24 h of administration, we observed dendritic cell activation in tumor-draining lymph nodes (TDLN). This was followed by a rapid and marked increase in the number of tetramer-specific CD8(+) T cells in the spleens of treated animals. In contrast, the vascular disrupting agent combretastatin A4-phosphate, which caused a similar amount of immediate tumor necrosis, did not activate dendritic cells, nor induce an effective antitumor response. Using in vitro systems, we made the observation that DMXAA has the ability to directly activate mouse dendritic cells, as measured by increased expression of costimulatory molecules and proinflammatory cytokine release via a pathway that does not require the Toll-like receptor adaptor molecule MyD88. DMXAA thus has the ability to activate tumor-specific CD8(+) T cells through multiple pathways that include induction of tumor cell death, release of stimulatory cytokines, and direct activation of dendritic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-06-3757 | DOI Listing |
Medicine (Baltimore)
January 2025
The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.
View Article and Find Full Text PDFMol Oncol
January 2025
System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan.
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.
Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.
Cells
January 2025
Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.
Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!