A neurobiological theory of automaticity in perceptual categorization.

Psychol Rev

Department of Psychology, University of California, Santa Barbara, CA 93106, USA.

Published: July 2007

A biologically detailed computational model is described of how categorization judgments become automatic in tasks that depend on procedural learning. The model assumes 2 neural pathways from sensory association cortex to the premotor area that mediates response selection. A longer and slower path projects to the premotor area via the striatum, globus pallidus, and thalamus. A faster, purely cortical path projects directly to the premotor area. The model assumes that the subcortical path has greater neural plasticity because of a dopamine-mediated learning signal from the substantia nigra. In contrast, the cortical-cortical path learns more slowly via (dopamine independent) Hebbian learning. Because of its greater plasticity, early performance is dominated by the subcortical path, but the development of automaticity is characterized by a transfer of control to the faster cortical-cortical projection. The model, called SPEED (Subcortical Pathways Enable Expertise Development), includes differential equations that describe activation in the relevant brain areas and difference equations that describe the 2- and 3-factor learning. A variety of simulations are described, showing that the model accounts for some classic single-cell recording and behavioral results.

Download full-text PDF

Source
http://dx.doi.org/10.1037/0033-295X.114.3.632DOI Listing

Publication Analysis

Top Keywords

premotor area
12
model assumes
8
path projects
8
subcortical path
8
equations describe
8
model
5
path
5
neurobiological theory
4
theory automaticity
4
automaticity perceptual
4

Similar Publications

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative.

View Article and Find Full Text PDF

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!