A mixture of a pair of stereoisomeric new spirostanol saponins (1a and 1b) and a new cholestane saponin (2) were isolated from the rhizome of Paris pollyphylla Smith var. yunnanensis. Their structures were elucidated as (25R)-spirost-5-en-3beta, 7beta-diol-3-O-alpha-L-arabinofuranosyl-(1 --> 4)-[alpha-L-rhamnopyranosyl-(1 --> 2)]-beta-D-glucopyranoside (1a), (25R)-spirost-5-en-3beta, 7alpha-diol-3-O-alpha-L-arabinofuranosyl-(1 --> 4)-[alpha-L-rhamnopyranosyl-(1 --> 2)]-beta-D-glucopyranoside (1b) and 26-O-beta-D-glucopyranosyl-(25R)-Delta(5(6), 17(20))-dien-16, 22-dione-cholestan-3beta, 26-diol-3-O-alpha-L-arabinofuranosyl-(1 --> 4)-[alpha-L-rhamnopyranosyl-(1 --> 2)]-beta-D-glucopyranoside (2) by a combination of HR-ESI-MS, FAB-MS, 1D and 2D NMR techniques (including (1)H-NMR, (13)C-NMR, (1)H--(1)H COSY, HSQC, HMBC and NOESY).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.2039 | DOI Listing |
Alzheimers Dement
December 2024
University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.
Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.
Background: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical studies (phase 2, NCT01767311 and phase 3 ClarityAD, NCT03887455) in early Alzheimer's disease, lecanemab substantially reduced amyloid PET and significantly slowed clinical decline on multiple measures of cognition and function, including CDR-SB at 18 months. Models describing the change in amyloid PET and CDR-SB in response to lecanemab treatment were used to explore the impact of changing from the initial dosage regimen (10 mg/kg every 2 weeks [Q2W]) to a less intensive maintenance dosing regimen (10 mg/kg every 4 weeks [Q4W]) on clinical efficacy, and to explore the optimal duration of the initial dosing regimen.
View Article and Find Full Text PDFBackground: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.
View Article and Find Full Text PDFBackground: Clinical outcome assessments (COAs) are an important part of clinical trials to measure what is meaningful to patients and caregivers. This study aimed to examine trends in Alzheimer's Disease (AD) COAs used in clinical trials, given the FDA's recent emphasis on patient-focused drug development and early AD.
Method: ClinicalTrials.
Alzheimers Dement
December 2024
School of Pharmacy, Chapman University, Irvine, CA, USA.
Background: Although novel treatments for Alzheimer's disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long-term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood-brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!