Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Residuals are frequently used to evaluate the validity of the assumptions of statistical models and may also be employed as tools for model selection. For standard (normal) linear models, for example, residuals are used to verify homoscedasticity, linearity of effects, presence of outliers, normality and independence of the errors. Similar uses may be envisaged for three types of residuals that emerge from the fitting of linear mixed models. We review some of the residual analysis techniques that have been used in this context and propose a standardization of the conditional residual useful to identify outlying observations and clusters. We illustrate the procedures with a practical example.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.200610341 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!