The role of Akt-GSK-3beta signaling and synaptic strength in phencyclidine-induced neurodegeneration.

Neuropsychopharmacology

Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.

Published: May 2008

N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) can induce positive and negative symptoms of schizophrenia in humans and related effects in rodents. PCP treatment of developing rats induces apoptotic neurodegeneration and behavioral deficits later in life that mimic some symptoms of schizophrenia. The precise mechanism of PCP-induced neural degeneration is unknown. This study used selective antagonists, siRNA, and Western analysis to investigate the role of the Akt-glycogen synthase kinase-3beta (GSK-3beta) pathway in PCP-induced neuronal apoptosis in both neuronal culture and postnatal day 7 rats. PCP administration in vivo and in vitro reduced the phosphorylation of Akt Ser427 and GSK-3beta Ser9, decreasing Akt activity and increasing GSK-3beta activity. The alteration of Akt-GSK-3beta signaling parallels the temporal profile of caspase-3 activation by PCP. Reducing GSK-3beta activity by application of selective inhibitors or depletion of GSK-3beta by siRNA attenuates caspase-3 activity and blocks PCP-induced neurotoxicity. Moreover, increasing synaptic strength by either activation of L-type calcium channels with BAY K8644 or potentiation of synaptic NMDA receptors with either a low concentration of NMDA or bicuculline plus 4-aminopyridine completely blocks PCP-induced cell death by increasing Akt phosphorylation. These neuroprotective effects are associated with activation of phosphoinositide-3-kinase-Akt signaling, and to a lesser extent, the MAPK signaling pathway. Overall, these data suggest that PCP-induced hypofunction of synaptic NMDA receptors impairs the Akt-GSK-3beta cascade, which is necessary for neuronal survival during development, and that interference with this cascade by PCP or natural factors may contribute to neural pathologies, perhaps including schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301511DOI Listing

Publication Analysis

Top Keywords

akt-gsk-3beta signaling
8
synaptic strength
8
symptoms schizophrenia
8
gsk-3beta activity
8
blocks pcp-induced
8
synaptic nmda
8
nmda receptors
8
pcp
5
pcp-induced
5
gsk-3beta
5

Similar Publications

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • The prolonged use of external fixation during distraction osteogenesis (DO) can heighten complications, while bone marrow mesenchymal stem cells (BMSCs) play a crucial role in bone regeneration due to their pro-angiogenic and osteogenic abilities.
  • RSC-96, a type of Schwann cell, has been shown to promote the proliferation, migration, and differentiation of BMSCs when co-cultured, enhancing both bone formation and blood vessel development through neurotrophic factor secretion and activation of specific signaling pathways.
  • In a rat DO model, RSC-96's conditioned medium improved bone healing outcomes, with notable increases in gene expression markers for osteogenesis and angiogenesis, alongside positive radiological and biomechanical assessments.
View Article and Find Full Text PDF

The bovine uterus is susceptible to bacterial infections after calving, particularly from (), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!