Purpose: To investigate the ability of blood oxygen level-dependent (BOLD) MRI to depict clinically significant prostate tumor hypoxia.
Methods And Materials: Thirty-three patients with prostate carcinoma undergoing radical prostatectomy were studied preoperatively, using gradient echo sequences without and with contrast medium enhancement, to map relative tissue oxygenation according to relaxivity rates and relative blood volume (rBV). Pimonidazole was administered preoperatively, and whole-mount sections of selected tumor-bearing slices were stained for pimonidazole fixation and tumor and nontumor localization. Histologic and imaging parameters were independently mapped onto patient prostate outlines. Using 5-mm grids, 861 nontumor grid locations were compared with 237 tumor grids (with >50% tumor per location) using contingency table analysis with respect to the ability of imaging to predict pimonidazole staining.
Results: Twenty patients completed the imaging and histologic protocols. Pimonidazole staining was found in 33% of nontumor and in 70% of tumor grids. The sensitivity of the MR relaxivity parameter R(2)* in depicting tumor hypoxia was high (88%), improving with the addition of low rBV information (95%) without changing specificity (36% and 29%, respectively). High R(2)* increased the positive predictive value for hypoxia by 6% (70% to 76%); conversely, low R(2)* decreased the likelihood of hypoxia being present by 26% (70% to 44%) and by 41% (71% to 30%) when combined with rBV information.
Conclusion: R(2)* maps from BOLD-MRI have high sensitivity but low specificity for defining intraprostatic tumor hypoxia. This together with the negative predictive value of 70% when combined with blood volume information makes BOLD-MRI a potential noninvasive technique for mapping prostatic tumor hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2007.01.018 | DOI Listing |
Cancer Cell
December 2024
Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), 60 Biopolis Street, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. Electronic address:
Successful immunotherapy relies on both intratumoral and systemic immunity, which is yet to be achieved for most patients with cancer. Here, we identify P4HA1, encoding prolyl 4-hydroxylase 1, as a crucial regulator of CD8 T cell differentiation strongly upregulated in tumor-draining lymph nodes (TDLNs) and hypoxic tumor microenvironment. P4HA1 accumulates in mitochondria, disrupting the tricarboxylic acid (TCA) cycle through aberrant α-ketoglutarate and succinate metabolism, promoting mitochondria unfitness and exhaustion while suppressing progenitor expansion.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:
Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT.
View Article and Find Full Text PDFMol Oncol
December 2024
Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.
Hypoxia is known to induce reprogramming of glucose metabolism in cancer. However, the impact of hypoxia on global metabolism remains poorly understood. Here, using the systems approach, we evaluated the potential crosstalk between hypoxia and global metabolism using data from > 2000 breast tumors.
View Article and Find Full Text PDFElife
December 2024
Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China.
TIPE () has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!