Conformational change in an MFS protein: MD simulations of LacY.

Structure

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

Published: July 2007

Molecular dynamics simulations of lactose permease (LacY) in a phospholipid bilayer reveal the conformational dynamics of the protein. In inhibitor-bound simulations (i.e., those closest to the X-ray structure) the protein was stable, showing little conformational change over a 50 ns timescale. Movement of the bound inhibitor, TDG, to an alternative binding mode was observed, so that it interacted predominantly with the N-terminal domain and with residue E269 from the C-terminal domain. In multiple ligand-free simulations, a degree of domain closure occurred. This switched LacY to a state with a central cavity closed at both the intracellular and periplasmic ends. This may resemble a possible intermediate in the transport mechanism. Domain closure occurs by a combination of rigid-body movements of domains and of intradomain motions of helices, especially TM4, TM5, TM10, and TM11. A degree of intrahelix flexibility appears to be important in the conformational change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2007.06.004DOI Listing

Publication Analysis

Top Keywords

conformational change
12
domain closure
8
conformational
4
change mfs
4
mfs protein
4
simulations
4
protein simulations
4
simulations lacy
4
lacy molecular
4
molecular dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!