Free solution and gel electrophoresis is an extremely useful tool in the separation of biopolymers. The complex nature of biopolymers, coupled with the usefulness of electrophoretic methods, has stimulated the development of theoretical modeling over the last 30 years. In this work, these developments are first reviewed with emphasis on Boundary Element and bead methodologies that enable the investigator to design realistic models of biopolymers. In the present work, the bead methodology is generalized to include the presence of a gel through the Effective Medium model. The biopolymer is represented as a bead array. A peptide, for example, made up of N amino acids is modeled as 2N beads. Duplex DNA is modeled as a discrete wormlike chain consisting of touching beads. The technical details of the method are placed in three Appendices. To illustrate the accuracy and effectiveness of the approach, two applications are considered. Model studies on both the free solution mobility of 73 peptides ranging in size from 2 to 42 amino acids, and the mobility of short duplex DNA in dilute agarose gels are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.20809 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
Stereolithography three-dimensional (3D) printing technology enables the customization of ceramic-based solid electrolyte structures with desired electrochemical properties; however, formulating slurries that both are highly ceramic-loaded and have low viscosity for printing poses a challenge. Here, we propose an ionogel-coated ceramic approach to prepare a shear-thinning fast-ion conductor ceramic (LiLaZrTaO) slurry, which possesses both a high ceramic content of 50 wt % and a low viscosity of 1.53 Pa·s.
View Article and Find Full Text PDFACS Sens
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
Epithelial cell adhesion molecule (EpCAM) was considered to be an important marker of multiple tumors, and its high expression is closely related to the early diagnosis and treatment of tumors. At present, metal oxide semiconductors have become a key component of biosensor and bioelectronics technology. Tin oxide shows great potential for development because of its nontoxic, nonpolluting, low price, and excellent electrical properties.
View Article and Find Full Text PDFMed Phys
January 2025
National Institute for Mathematical Sciences, Daejeon, Republic of Korea.
Background: In X-ray computed tomography (CT), metal-induced beam hardening artifacts arise from the complex interactions between polychromatic X-ray beams and metallic objects, leading to degraded image quality and impeding accurate diagnosis. A previously proposed metal-induced beam hardening correction (MBHC) method provides a theoretical framework for addressing nonlinear artifacts through mathematical analysis, with its effectiveness demonstrated by numerical simulations and phantom experiments. However, in practical applications, this method relies on precise segmentation of highly attenuating materials and parameter estimations, which limit its ability to fully correct artifacts caused by the intricate interactions between metals and other dense materials, such as bone or teeth.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Korea Research Institute of Chemical Technology, Daejeon, South Korea.
Photo-biocatalyst coupled systems offer a promising approach for converting solar energy into valuable fuels. The bio-integrated photocatalytic system sets a research benchmark by utilizing green energy for formic acid production, reducing CO₂ emissions, and enhancing selectivity through bio-enzyme incorporation. This bio-photocatalytic are promising solutions for environmental remediation and energy production.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry, Pharmacy, GERMANY.
Targeting the RNA genome of SARS-CoV-2 is a viable option for antiviral drug development. We explored three ligand binding sites of the core pseudoknot RNA of the SARS-CoV-2 frameshift element. We iteratively optimized ligands, based on improved affinities, targeting these binding sites and report on structural and dynamic properties of the three identified binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!