Simulations of RNA base pairs in a nanodroplet reveal solvation-dependent stability.

Proc Natl Acad Sci U S A

Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305, USA.

Published: July 2007

AI Article Synopsis

Article Abstract

We show that RNA base pairs have variable stability depending on their degree of solvation. This finding has far-reaching biological implications for nucleic acid structure in a partially solvated cellular environment such as inside RNA-protein complexes. Molecular dynamics simulations of partially solvated Watson-Crick RNA base pairs show that whereas water serves to destabilize a base pair by competing for and disrupting base-base hydrogen bonds, when sufficient water molecules are present, fewer hydrogen bonds are available to disrupt the base pairs and the destabilization effect is reduced. The result is that base pairs exist at a stability minimum when solvated in between 20 and 100 water molecules, the upper limit of which corresponds to the approximate number of water molecules contained in the first hydration shell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920539PMC
http://dx.doi.org/10.1073/pnas.0705573104DOI Listing

Publication Analysis

Top Keywords

base pairs
20
rna base
12
water molecules
12
partially solvated
8
hydrogen bonds
8
base
6
pairs
5
simulations rna
4
pairs nanodroplet
4
nanodroplet reveal
4

Similar Publications

Na-concentration dependent conformational switch of oncogene RET G-quadruplex DNA in solution.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Proto-oncogene RET is overexpressed in many cancers, and its expression level is positively related to the size and malignancy of the tumors. Effective inhibition of its overexpression can be used to potentially treat cancers. A guanine-rich GC-boxes (I-V) sequence in its promoter region folds into noncanonical G-quadruplex (G4) DNA structures, negatively regulating its expression by interactions with small molecules.

View Article and Find Full Text PDF

Isolation and characterization of a broad-spectrum bacteriophage against multi-drug resistant Escherichia coli from waterfowl field.

Poult Sci

January 2025

Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China. Electronic address:

Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health.

View Article and Find Full Text PDF

Sequence analysis and genome organization of a new marafivirus from Leptochloa chinensis.

Arch Virol

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.

High-throughput sequencing was used to identify and characterize a novel marafivirus from the weed Leptochloa chinensis, which was tentatively named "Leptochloa chinensis marafivirus" (LcMV). The complete genome of the virus consists of 6,178 base pairs, and its nucleotide sequence is 73.82% identical to that of Sorghum almum marafivirus, which is a member of the genus Marafivirus within the family Tymoviridae.

View Article and Find Full Text PDF

The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.

View Article and Find Full Text PDF

Recent advancements in genomics, propelled by artificial intelligence, have unlocked unprecedented capabilities in interpreting genomic sequences, mitigating the need for exhaustive experimental analysis of complex, intertwined molecular processes inherent in DNA function. A significant challenge, however, resides in accurately decoding genomic sequences, which inherently involves comprehending rich contextual information dispersed across thousands of nucleotides. To address this need, we introduce GENA language model (GENA-LM), a suite of transformer-based foundational DNA language models capable of handling input lengths up to 36 000 base pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!