The sphingoid long chain bases (LCBs) and their phosphorylated derivatives (LCB-Ps) are important signaling molecules in eukaryotic organisms. The cellular levels of LCB-Ps are tightly controlled by the coordinated action of the LCB kinase activity responsible for their synthesis and the LCB-P phosphatase and lyase activities responsible for their catabolism. Although recent studies have implicated LCB-Ps as regulatory molecules in plants, in comparison with yeast and mammals, much less is known about their metabolism and function in plants. To investigate the functions of LCB-Ps in plants, we have undertaken the identification and characterization of Arabidopsis genes that encode the enzymes of LCB-P metabolism. In this study the Arabidopsis At1g27980 gene was shown to encode the only detectable LCB-P lyase activity in Arabidopsis. The LCB-P lyase activity was characterized, and mutant plant lines lacking the lyase were generated and analyzed. Whereas in other organisms loss of LCB-P lyase activity is associated with accumulation of high levels of LCB/LCB-Ps and developmental abnormalities, the sphingolipid profiles of the mutant plants were remarkably similar to those of wild-type plants, and no developmental abnormalities were observed. Thus, these studies indicate that the lyase plays a minor role in maintenance of sphingolipid metabolism during normal plant development and growth. However, a clear role for the lyase was revealed upon perturbation of sphingolipid synthesis by treatment with the inhibitor of ceramide synthase, fumonisin B(1).

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M705074200DOI Listing

Publication Analysis

Top Keywords

long chain
12
lcb-p lyase
12
lyase activity
12
chain base
8
base phosphate
8
lyase
8
developmental abnormalities
8
lcb-p
5
plants
5
arabidopsis
4

Similar Publications

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.

View Article and Find Full Text PDF

Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy.

Acta Pharmacol Sin

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.

View Article and Find Full Text PDF

The Pharmacology and Toxicology of Ginkgolic Acids: Secondary Metabolites from .

Am J Chin Med

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.

Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).

View Article and Find Full Text PDF

Molecular mechanism of long chain non coding RNA LINC00511 influencing breast cancer stem cells: Mechanism of VEGFR1 protein.

Int J Biol Macromol

January 2025

Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, PR China; Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, PR China; Key Laloratory of Molecular Pathology in Tumors of Guangxi, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden. Electronic address:

A comprehensive investigation into the mechanism of VEGFR1 protein in this process was undertaken. Lentivirus-mediated RNA interference was employed to inhibit the expression of LINC00511 in breast cancer cell lines, and changes in breast cancer stem cell markers, including CD44+/CD24-, were monitored using flow cytometry. Additionally, the interaction between VEGFR1 protein and LINC00511 and the activation of its downstream signaling pathway were investigated through co-immunoprecipitation (Co-IP) and Western blot techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!