Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro.

J Neurochem

Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.

Published: October 2007

The anti-Parkinson, selective irreversible monoamine oxidase B inhibitor drug, rasagiline (Azilect), recently approved by the US Food and Drug Administration, has been shown to possess neuroprotective-neurorescue activities in in vitro and in vivo models. Recent preliminary studies indicated the potential neuroprotective effect of the major metabolite of rasagiline, 1-(R)-aminoindan. In the current study, the neuroprotective properties of 1-(R)-aminoindan were assessed employing a cytotoxic model of human neuroblastoma SK-N-SH cells in high-density culture-induced neuronal death. We show that aminoindan (0.1-1 mumol/L) significantly reduced the apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated pPKC(pan) and specifically that of the pro-survival PKC isoform, PKCepsilon. Additionally, hydroxyaminoindan, a metabolite of a novel bifunctional drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], combining cholinesterase and monoamine oxidase inhibitor activity, exerted similar neuroprotective properties. Aminoindan and hydroxyaminoindan also protected rat pheochromacytoma PC-12 cells against the neurotoxin, 6-hydroxydopamine. Our findings suggest that both metabolites may contribute to the overall neuroprotective activity of their respective parent compounds, further implicating rasagiline and ladostigil as potentially valuable drugs for treatment of a wide variety of neurodegenerative disorders of aging.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04777.xDOI Listing

Publication Analysis

Top Keywords

neuroprotective properties
12
aminoindan hydroxyaminoindan
8
rasagiline ladostigil
8
monoamine oxidase
8
oxidase inhibitor
8
neuroprotective
5
aminoindan
4
hydroxyaminoindan metabolites
4
rasagiline
4
metabolites rasagiline
4

Similar Publications

Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.

Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.

View Article and Find Full Text PDF

The prospective therapeutic benefits of sesamol: neuroprotection in neurological diseases.

Nutr Neurosci

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China.

Oxidative stress is recognized as a critical contributor to the advancement of neurological diseases, thereby rendering the alleviation of oxidative stress a pivotal strategy in the therapeutic management of such conditions. Sesamol, the principal constituent of sesame oil, has been the subject of extensive research due to its significant antioxidant properties, especially its ability to effectively counteract oxidative stress within the central nervous system and confer neuroprotection. While sesamol demonstrates potential in the treatment and prevention of neurological diseases, its modulation of oxidative stress is complex and not yet fully understood.

View Article and Find Full Text PDF

Chalcogen dihydrobenzofuran compounds as potential neuroprotective agents: an in vitro and in silico biological investigation.

Biochimie

January 2025

Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 96010-900 RS, Brazil. Electronic address:

Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through in vitro and in silico tests.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!