Increased visual cortex glucose metabolism contralateral to angioma in children with Sturge-Weber syndrome.

Dev Med Child Neurol

Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA.

Published: August 2007

Functional reorganization after focal brain injury can lead to altered cerebral metabolism of glucose. Sturge-Weber syndrome (SWS) with unilateral involvement is a clinical model for evaluating the effects of early focal brain injury on brain metabolism and function. In this study, 2-deoxy-2[(18)F]fluoro-D-glucose (FDG) positron emission tomography (PET) was used to measure glucose metabolism in cortex and basal ganglia, both ipsilateral and contralateral to the angioma, in 17 children (eight males, nine females; age range 1y 8mo-10y 4mo; mean 5y 7mo [SD 2y 11mo]) with unilateral SWS and epilepsy. The PET findings were compared with those of a control group of 11 age-matched children (four males, seven females; age range 3y-10y 8mo; mean 6y [SD 2y 10mo]) with partial epilepsy but normal magnetic resonance imaging and PET scans. In the SWS group, visual and parietal cortex showed decreased glucose metabolism on the side of the angioma (p=0.001) but increased metabolism on the contralateral side (p=0.002). In particular, glucose metabolism was very high in contralateral visual cortex of childrenwith SWS, showing severe occipital hypometabolism on the side of the angioma. Eight children with visual field defect showed increased metabolism in the contralateral visual cortex (p=0.012). These findings indicate that early, severe unilateral cortical damage in SWS may induce increased glucose metabolism in the contralateral visual cortex, probably reflecting reorganization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8749.2007.00567.xDOI Listing

Publication Analysis

Top Keywords

glucose metabolism
20
visual cortex
16
metabolism contralateral
16
angioma children
12
contralateral visual
12
metabolism
9
contralateral angioma
8
sturge-weber syndrome
8
focal brain
8
brain injury
8

Similar Publications

Background/purpose: Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored.

Methods: Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded.

View Article and Find Full Text PDF

The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26).

View Article and Find Full Text PDF

To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.

View Article and Find Full Text PDF

Net energy of grains for dairy goats differed with processing methods and grain types.

J Anim Sci Biotechnol

January 2025

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.

Methods: Eighteen castrated Guanzhong dairy goats (44.

View Article and Find Full Text PDF

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!