Purpose: Mammalian heparanase degrades heparan sulfate, the main polysaccharide of the basement membrane. Heparanase is an important determinant in cancer progression, acting via the breakdown of extracellular barriers for invasion, as well as release of heparan sulfate-bound angiogenic and growth-promoting factors. The present study was undertaken to elucidate molecular mechanisms responsible for heparanase overexpression in breast cancer.
Experimental Design: To characterize heparanase regulation by estrogen and tamoxifen and its clinical relevance for breast tumorigenesis, we applied immunohistochemical analysis of tissue microarray combined with chromatin immunoprecipitation assay, reverse transcription-PCR, and Western blot analysis.
Results: A highly significant correlation (P<0.0001) between estrogen receptor (ER) positivity and heparanase overexpression was found in breast cancer. Binding of ER to heparanase promoter accompanied estrogen-induced increase in heparanase expression by breast carcinoma cells. Surprisingly, heparanase transcription was also stimulated by tamoxifen, conferring a proliferation advantage to breast carcinoma cells grown on a naturally produced extracellular matrix. Heparanase overexpression was invariably detected in ER-positive second primary breast tumors, developed in patients receiving tamoxifen for the initial breast carcinoma. The molecular mechanism of the estrogenlike effect of tamoxifen on heparanase expression involves recruitment of transcription coactivator AIB1 to the heparanase promoter.
Conclusions: Heparanase induction by ligand-bound ER represents an important pathway in breast tumorigenesis and may be responsible, at least in part, for the failure of tamoxifen therapy in some patients. Our study provides new insights on breast cancer progression and endocrine therapy resistance, offering future strategies for delaying or reversing this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-06-2546 | DOI Listing |
Viruses
November 2024
Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.
View Article and Find Full Text PDFBiomolecules
November 2024
Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel.
Bone metastasis and steroids are known to activate the coagulation system and induce osteoporosis, pathological bone fractures, and bone pain. Heparanase is a protein known to enhance the hemostatic system and to promote angiogenesis, metastasis, and inflammation. The objective of the present study was to evaluate the effects of steroids and malignancy on the coagulation factors and osteoblast activity in the bone tissue.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Adv Sci (Weinh)
December 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
Circulating lactate is a critical biomarker for sepsis-induced acute lung injury (S-ALI) and is strongly associated with poor prognosis. However, whether elevated lactate directly promotes S-ALI and the specific mechanism involved remain unclear. Here, this work shows that lactate causes pulmonary endothelial glycocalyx degradation and worsens ALI during sepsis.
View Article and Find Full Text PDFCell Death Dis
December 2024
Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
Little attention was given to heparanase 2 (Hpa2) over the last two decades, possibly because it lacks a heparan sulfate (HS)-degrading activity typical of heparanase. Emerging results suggest, nonetheless, that Hpa2 plays a role in human pathologies, including cancer progression where it functions as a tumor suppressor. Here, we examined the role of Hpa2 in cervical carcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!