CE separations are known for their high separation efficiencies. In systems with EOF, the high efficiencies benefit from the flat, plug profile that is characteristic of EOF. When a velocity gradient is present, such as in separations which have nonuniform buffer ionic strength, surface adsorption or differences in the height of the ends of the capillary, a parabolic flow component is introduced. This deviation from purely EOF yields increased peak dispersion and a subsequent decrease in separation performance. This work details a rapid method for detecting deviations from ideal plug flow during the course of a separation using the radially averaged flow profile of a photobleached fluorophore added to the BGE. By comparing the ratio of two different data analysis procedures, deviations from ideal plug flow can be detected. This method allows rapid measurement of flow character and does not interfere with the concurrent separation. We demonstrate easy detection of the onset of hydrodynamic flow induced by both gravity siphoning and an ionic strength buffer discontinuity. A brief analysis of the radially averaged peak shapes is also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200600517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!