Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sperm competition occurs when the gametes of or more males compete for opportunities to fertilize a given set of ova. Previous studies have demonstrated that certain morphological characteristics are affected by sperm competition intensity (e.g. relative testes size and sperm midpiece volume). This study examined whether aspects of sperm energetics may also be affected by sexual selection. We compared the membrane potential of mitochondria in live sperm between H. sapiens (single partner mating system) and P. troglodytes (multiple partner mating system). Flow cytometry of sperm stained with the carbocyanine fluorescent dye JC-1 (an assay for mitochondrial membrane potential) revealed marked differences in red fluorescence intensity. P. troglodytes sperm showed significantly higher mitochondrial membrane potential. Mitochondria provide a substantial part of the energy required for sperm motility. A higher mitochondrial loading may therefore be associated with enhanced sperm motility and/or longevity. Additionally, examination of JC-1 red fluorescence levels before and after in vitro capacitation revealed further differences. Whereas chimpanzee sperm showed maintenance of membrane potential after capacitation (in some cases even an increase), sperm from humans consistently showed reduction in membrane potential. These results indicate that the sperm of human beings and chimpanzees exhibit marked differences in mitochondrial function, which are affected by selection pressures relating to sperm competition and that these pressures differ significantly between humans and chimpanzees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.20674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!